Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(6): e11454, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38903145

ABSTRACT

We combined two climate-based distribution models with three finer-scale suitability models to identify habitat for pronghorn recovery in California now and into the future. We used a consensus approach to identify areas of suitable climate now and future for pronghorn in California. We compared the results of climate models from two separate hypotheses about their historical ecology in the state. Under the migration hypothesis, pronghorn were expected to be limited climatically by extreme cold in winter and extreme heat in summer; under the niche reduction hypothesis, historical pronghorn of distribution would have better represented the climatic limitations of the species. We combined occurrences from GPS collars distributed across three populations of pronghorn in the state to create three distinct habitat suitability models: (1) an ensemble model using random forests, Maxent, classification and regression Trees, and a generalized linear model; (2) a step selection function; and (3) an expert-driven model. We evaluated consensus among both the climate models and the suitability models to prioritize areas for, and evaluate the prospects of, pronghorn recovery. Climate suitability for pronghorn in the future depends heavily on model assumptions. Under the migration hypothesis, our model predicted that there will be no suitable climate in California in the future. Under the niche reduction hypothesis, by contrast, suitable climate will expand. Habitat suitability also depended on the methods used, but areas of consensus among all three models exist in large patches throughout the state. Identifying habitat for a species which has undergone extreme range collapse, and which has very fine scale habitat needs, presents novel challenges for spatial ecologists. Our multimethod, multihypothesis approach can allow habitat modelers to identify areas of consensus and, perhaps more importantly, fill critical knowledge gaps that could resolve disagreements among the models. For pronghorn, a better understanding of their upper thermal tolerances and whether historical populations migrated will be crucial to their potential recovery in California and throughout the arid Southwest.

2.
Ecol Evol ; 10(23): 12960-12972, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304508

ABSTRACT

AIM: Coffee is an important export for many developing countries, with a global annual trade value of $100 billion, but it is threatened by a warming climate. Shade trees may mitigate the effects of climate change through temperature regulation that can aid in coffee growth, slow pest reproduction, and sustain avian insectivore diversity. The impact of shade on bird diversity and microclimate on coffee farms has been studied extensively in the Neotropics, but there is a dearth of research in the Paleotropics. LOCATION: East Africa. METHODS: We created current and future regional Maxent models for avian insectivores in East Africa using Worldclim temperature data and observations from the Global Biodiversity Information Database. We then adjusted current and future bioclimatic layers based on mean differences in temperature between shade and sun coffee farms and projected the models using these adjusted layers to predict the impact of shade tree removal on climatic suitability for avian insectivores. RESULTS: Existing Worldclim temperature layers more closely matched temperatures under shade trees than temperatures in the open. Removal of shade trees, through warmer temperatures alone, would result in reduction of avian insectivore species by over 25%, a loss equivalent to 50 years of climate change under the most optimistic emissions scenario. Under the most extreme climate scenario and removal of shade trees, insectivore richness is projected to decline from a mean of 38 to fewer than 8 avian insectivore species. MAIN CONCLUSIONS: We found that shade trees on coffee farms already provide important cooler microclimates for avian insectivores. Future temperatures will become a regionally limiting factor for bird distribution in East Africa, which could negatively impact control of coffee pests, but the effect of climate change can be potentially mediated through planting and maintaining shade trees on coffee farms.

3.
J Hered ; 110(5): 548-558, 2019 08 16.
Article in English | MEDLINE | ID: mdl-30715400

ABSTRACT

From a conservation management perspective it is important to understand how genetic diversity is partitioned across a species' range, including 1) identification of evolutionarily distinct units versus those recently isolated through anthropogenic activities and 2) the relative genetic contributions among components of fragmented (meta)populations. To address these questions, we investigated the phylogeography and metapopulation structure among relict populations of the endangered giant kangaroo rat (Dipodomys ingens) in the highly altered San Joaquin Desert Ecosystem. This keystone species underwent a ~97% range reduction over the past century, resulting in a current range that is highly fragmented, with 2 dominant northern and southern populations occurring 150 km apart. We sequenced >800 bp of mitochondrial DNA and genotyped 17 nuclear microsatellites in >275 D. ingens to assess the evolutionary relationship of these populations as well as the genetic structure within the northern metapopulation. A Bayesian Skyline Plot indicated that the species experienced a demographic expansion toward the end of the Pleistocene, with a recent population decline. Northern and southern D. ingens split 1857-13 443 years ago, prior to the massive conversion of the San Joaquin Valley to irrigated agriculture. We recommend that the northern and southern populations of D. ingens be re-classified as distinct population segments under the United States Endangered Species Act. We also observed population structure and asymmetrical migration within northern D. ingens where the Tumey Hills acted as a source contributing gene flow to all peripheral populations. This emphasized the importance of this location in the conservation of the metapopulation as a whole.


Subject(s)
Dipodomys , Endangered Species , Population Density , Animals , Biological Evolution , DNA, Mitochondrial , Genetic Structures , Haplotypes , Microsatellite Repeats , Phylogeny , Phylogeography , Population Surveillance
4.
PLoS One ; 9(9): e106638, 2014.
Article in English | MEDLINE | ID: mdl-25237807

ABSTRACT

Species distributions are known to be limited by biotic and abiotic factors at multiple temporal and spatial scales. Species distribution models, however, frequently assume a population at equilibrium in both time and space. Studies of habitat selection have repeatedly shown the difficulty of estimating resource selection if the scale or extent of analysis is incorrect. Here, we present a multi-step approach to estimate the realized and potential distribution of the endangered giant kangaroo rat. First, we estimate the potential distribution by modeling suitability at a range-wide scale using static bioclimatic variables. We then examine annual changes in extent at a population-level. We define "available" habitat based on the total suitable potential distribution at the range-wide scale. Then, within the available habitat, model changes in population extent driven by multiple measures of resource availability. By modeling distributions for a population with robust estimates of population extent through time, and ecologically relevant predictor variables, we improved the predictive ability of SDMs, as well as revealed an unanticipated relationship between population extent and precipitation at multiple scales. At a range-wide scale, the best model indicated the giant kangaroo rat was limited to areas that received little to no precipitation in the summer months. In contrast, the best model for shorter time scales showed a positive relation with resource abundance, driven by precipitation, in the current and previous year. These results suggest that the distribution of the giant kangaroo rat was limited to the wettest parts of the drier areas within the study region. This multi-step approach reinforces the differing relationship species may have with environmental variables at different scales, provides a novel method for defining "available" habitat in habitat selection studies, and suggests a way to create distribution models at spatial and temporal scales relevant to theoretical and applied ecologists.


Subject(s)
Animal Distribution , Dipodomys/physiology , Endangered Species , Models, Theoretical , Animals , California , Conservation of Natural Resources , Ecosystem , Population Density , Population Dynamics
5.
Science ; 321(5885): 123-6, 2008 Jul 04.
Article in English | MEDLINE | ID: mdl-18599788

ABSTRACT

Protected areas (PAs) have long been criticized as creations of and for an elite few, where associated costs, but few benefits, are borne by marginalized rural communities. Contrary to predictions of this argument, we found that average human population growth rates on the borders of 306 PAs in 45 countries in Africa and Latin America were nearly double average rural growth, suggesting that PAs attract, rather than repel, human settlement. Higher population growth on PA edges is evident across ecoregions, countries, and continents and is correlated positively with international donor investment in national conservation programs and an index of park-related funding. These findings provide insight on the value of PAs for local people, but also highlight a looming threat to PA effectiveness and biodiversity conservation.


Subject(s)
Conservation of Natural Resources , Ecosystem , Population Growth , Rural Population , Africa South of the Sahara , Biodiversity , Financial Support , Humans , Infant , Infant Mortality , International Agencies/economics , Latin America , Poverty
SELECTION OF CITATIONS
SEARCH DETAIL
...