Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Org Lett ; 5(10): 1613-6, 2003 May 15.
Article in English | MEDLINE | ID: mdl-12735734

ABSTRACT

[reaction: see text] Synthesis of the A-D rings of the cortical hormone (+)-aldosterone is described. The key step incorporates a chiral tether in a type 2 intramolecular Diels-Alder reaction that establishes the absolute configuration of four contiguous asymmetric centers. This approach provides an efficient route for either enantiomer of the steroid skeleton.


Subject(s)
Aldosterone/chemical synthesis , Crystallography, X-Ray , Indicators and Reagents , Models, Molecular , Molecular Conformation
2.
Angew Chem Int Ed Engl ; 40(5): 820-849, 2001 Mar 02.
Article in English | MEDLINE | ID: mdl-11241630

ABSTRACT

Anti-Bredt alkenes, bicyclic molecules that contain a bridgehead double bond, were for many years regarded as chemical curiosities. The type 2 intramolecular Diels-Alder (IMDA) reaction provides a one-step entry into this fascinating class of molecules. The reaction has made available numerous anti-Bredt alkenes for structural and chemical studies. X-ray crystallography has revealed the magnitude of the deformations associated with the bridgehead double bond, and rate studies of reactions of bridgehead alkenes have allowed quantification of the kinetic consequences of the torsional distortions. More recently, the type 2 intramolecular Diels-Alder reaction and the resulting anti-Bredt alkenes have found application in organic synthesis. The constraints resulting from the connectivity in the Diels-Alder precursor creates a strong regio- and stereochemical bias in the cycloaddition step. The end result of this bias is the stereoselective synthesis of highly substituted six-membered rings. The reaction also achieves a facile synthesis of seven- and eight-membered rings in a single step from acyclic precursors. The utility of this reaction has been verified in recent applications of the type 2 IMDA reaction as a key step in the total synthesis of complex natural products.

SELECTION OF CITATIONS
SEARCH DETAIL