Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 95: 103206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776844

ABSTRACT

The correct interpretation of breast density is important in the assessment of breast cancer risk. AI has been shown capable of accurately predicting breast density, however, due to the differences in imaging characteristics across mammography systems, models built using data from one system do not generalize well to other systems. Though federated learning (FL) has emerged as a way to improve the generalizability of AI without the need to share data, the best way to preserve features from all training data during FL is an active area of research. To explore FL methodology, the breast density classification FL challenge was hosted in partnership with the American College of Radiology, Harvard Medical Schools' Mass General Brigham, University of Colorado, NVIDIA, and the National Institutes of Health National Cancer Institute. Challenge participants were able to submit docker containers capable of implementing FL on three simulated medical facilities, each containing a unique large mammography dataset. The breast density FL challenge ran from June 15 to September 5, 2022, attracting seven finalists from around the world. The winning FL submission reached a linear kappa score of 0.653 on the challenge test data and 0.413 on an external testing dataset, scoring comparably to a model trained on the same data in a central location.


Subject(s)
Algorithms , Breast Density , Breast Neoplasms , Mammography , Humans , Female , Mammography/methods , Breast Neoplasms/diagnostic imaging , Machine Learning
2.
Radiol Imaging Cancer ; 6(1): e230033, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38180338

ABSTRACT

Purpose To describe the design, conduct, and results of the Breast Multiparametric MRI for prediction of neoadjuvant chemotherapy Response (BMMR2) challenge. Materials and Methods The BMMR2 computational challenge opened on May 28, 2021, and closed on December 21, 2021. The goal of the challenge was to identify image-based markers derived from multiparametric breast MRI, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI, along with clinical data for predicting pathologic complete response (pCR) following neoadjuvant treatment. Data included 573 breast MRI studies from 191 women (mean age [±SD], 48.9 years ± 10.56) in the I-SPY 2/American College of Radiology Imaging Network (ACRIN) 6698 trial (ClinicalTrials.gov: NCT01042379). The challenge cohort was split into training (60%) and test (40%) sets, with teams blinded to test set pCR outcomes. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC) and compared with the benchmark established from the ACRIN 6698 primary analysis. Results Eight teams submitted final predictions. Entries from three teams had point estimators of AUC that were higher than the benchmark performance (AUC, 0.782 [95% CI: 0.670, 0.893], with AUCs of 0.803 [95% CI: 0.702, 0.904], 0.838 [95% CI: 0.748, 0.928], and 0.840 [95% CI: 0.748, 0.932]). A variety of approaches were used, ranging from extraction of individual features to deep learning and artificial intelligence methods, incorporating DCE and DWI alone or in combination. Conclusion The BMMR2 challenge identified several models with high predictive performance, which may further expand the value of multiparametric breast MRI as an early marker of treatment response. Clinical trial registration no. NCT01042379 Keywords: MRI, Breast, Tumor Response Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Breast Neoplasms , Multiparametric Magnetic Resonance Imaging , Female , Humans , Middle Aged , Artificial Intelligence , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Magnetic Resonance Imaging , Neoadjuvant Therapy , Pathologic Complete Response , Adult
3.
Neuro Oncol ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38070147

ABSTRACT

BACKGROUND: We recently conducted a phase 2 trial (NCT028865685) evaluating intracranial efficacy of pembrolizumab for brain metastases (BM) of diverse histologies. Our study met its primary efficacy endpoint and illustrates that pembrolizumab exerts promising activity in a select group of patients with BM. Given the importance of aberrant vasculature in mediating immunosuppression, we explored the relationship between checkpoint inhibitor (ICI) efficacy and vascular architecture in the hopes of identifying potential mechanisms of intracranial ICI response or resistance for BM. METHODS: Using Vessel Architectural Imaging (VAI), a histologically validated quantitative metric for in vivo tumor vascular physiology, we analyzed dual echo DSC/DCE MRI for 44 patients on trial. Tumor and peri-tumor cerebral blood volume/flow, vessel size, arterial- and venous-dominance, and vascular permeability were measured before and after treatment with pembrolizumab. RESULTS: BM that progressed on ICI were characterized by a highly aberrant vasculature dominated by large-caliber vessels. In contrast, ICI-responsive BM possessed a more structurally balanced vasculature consisting of both small and large vessels, and there was a trend towards a decrease in under-perfused tissue, suggesting a reversal of the negative effects of hypoxia. In the peri-tumor region, development of smaller blood vessels, consistent with neo-angiogenesis, was associated with tumor growth before radiographic evidence of contrast enhancement on anatomical MRI. CONCLUSIONS: This study, one of the largest functional imaging studies for BM, suggests that vascular architecture is linked with ICI efficacy. Studies identifying modulators of vascular architecture, and effects on immune activity, are warranted and may inform future combination treatments.

4.
bioRxiv ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37693537

ABSTRACT

Structurally and functionally aberrant vasculature is a hallmark of tumor angiogenesis and treatment resistance. Given the synergistic link between aberrant tumor vasculature and immunosuppression, we analyzed perfusion MRI for 44 patients with brain metastases (BM) undergoing treatment with pembrolizumab. To date, vascular-immune communication, or the relationship between immune checkpoint inhibitor (ICI) efficacy and vascular architecture, has not been well-characterized in human imaging studies. We found that ICI-responsive BM possessed a structurally balanced vascular makeup, which was linked to improved vascular efficiency and an immune-stimulatory microenvironment. In contrast, ICI-resistant BM were characterized by a lack of immune cell infiltration and a highly aberrant vasculature dominated by large-caliber vessels. Peri-tumor region analysis revealed early functional changes predictive of ICI resistance before radiographic evidence on conventional MRI. This study was one of the largest functional imaging studies for BM and establishes a foundation for functional studies that illuminate the mechanisms linking patterns of vascular architecture with immunosuppression, as targeting these aspects of cancer biology may serve as the basis for future combination treatments.

5.
JAMA Netw Open ; 6(2): e230524, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36821110

ABSTRACT

Importance: An accurate and robust artificial intelligence (AI) algorithm for detecting cancer in digital breast tomosynthesis (DBT) could significantly improve detection accuracy and reduce health care costs worldwide. Objectives: To make training and evaluation data for the development of AI algorithms for DBT analysis available, to develop well-defined benchmarks, and to create publicly available code for existing methods. Design, Setting, and Participants: This diagnostic study is based on a multi-institutional international grand challenge in which research teams developed algorithms to detect lesions in DBT. A data set of 22 032 reconstructed DBT volumes was made available to research teams. Phase 1, in which teams were provided 700 scans from the training set, 120 from the validation set, and 180 from the test set, took place from December 2020 to January 2021, and phase 2, in which teams were given the full data set, took place from May to July 2021. Main Outcomes and Measures: The overall performance was evaluated by mean sensitivity for biopsied lesions using only DBT volumes with biopsied lesions; ties were broken by including all DBT volumes. Results: A total of 8 teams participated in the challenge. The team with the highest mean sensitivity for biopsied lesions was the NYU B-Team, with 0.957 (95% CI, 0.924-0.984), and the second-place team, ZeDuS, had a mean sensitivity of 0.926 (95% CI, 0.881-0.964). When the results were aggregated, the mean sensitivity for all submitted algorithms was 0.879; for only those who participated in phase 2, it was 0.926. Conclusions and Relevance: In this diagnostic study, an international competition produced algorithms with high sensitivity for using AI to detect lesions on DBT images. A standardized performance benchmark for the detection task using publicly available clinical imaging data was released, with detailed descriptions and analyses of submitted algorithms accompanied by a public release of their predictions and code for selected methods. These resources will serve as a foundation for future research on computer-assisted diagnosis methods for DBT, significantly lowering the barrier of entry for new researchers.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Humans , Female , Benchmarking , Mammography/methods , Algorithms , Radiographic Image Interpretation, Computer-Assisted/methods , Breast Neoplasms/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...