Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Physiol B ; 190(1): 139-148, 2020 01.
Article in English | MEDLINE | ID: mdl-31894351

ABSTRACT

Dugongs (Dugong dugon) are fully marine mammals that live independently of fresh water so must balance water and electrolytes in a hyperosmotic environment. To investigate osmoregulation, matched plasma and urine from 51 live wild dugongs were analysed for osmolality, major electrolytes (Na+, Cl-, K+), urea, creatinine, and glucose. Maximum urine osmolality (1468 mOsm kg -1) and Na+, K+, and Cl- concentrations (757, 131.3, 677 mmol L-1, respectively) indicate that dugongs are capable of concentrating urine above seawater and could potentially realise a net gain of free water from drinking seawater. However, mean urine osmolality of 925.4 (± 46.6) mOsm kg-1 suggests that mariposia is unlikely to be an important osmoregulatory mechanism. Dugongs may obtain enough preformed water from their seagrass diet and metabolic oxidation to maintain homeostasis. Mean plasma osmolality of 339.6 (± 1.8) mOsm kg-1 is higher than in the related manatees but within the range for fully marine cetaceans. Relatively high mean plasma Na+ (175.5 ± 1.7 mmol L-1) and K+ (6.9 ± 0.1 mmol L-1), as well as mean urinary Na+ (469.6 ± 22.5 mmol L-1) and K+ levels (32.5 ± 4.5 mmol L-1) may reflect a salt-rich seagrass diet. Pregnant females had higher mean plasma osmolality (355.3 ± 4.9 mmol L-1) than non-pregnant females and males (337.9 ± 1.7 mOsm kg-1), suggesting that fluid retention was not a feature of pregnancy. Further research on water intake and endocrinology will enhance our understanding of osmoregulation in dugongs.


Subject(s)
Dugong/physiology , Electrolytes/blood , Feeding Behavior/physiology , Animals , Dugong/blood , Female , Male , Oceans and Seas , Osmolar Concentration , Osmoregulation , Pregnancy , Water-Electrolyte Balance
2.
Biol Lett ; 5(6): 853-6, 2009 Dec 23.
Article in English | MEDLINE | ID: mdl-19605390

ABSTRACT

In this study of body temperatures (T(b)) in free ranging dromedary camels, we found that bulls in rut start the days cooler. Daily minima during rut averaged 0.6 degrees C lower than at other times (95% CI 0.27-0.94 degrees C) and daily maxima averaged 0.45 degrees C higher (95% CI -0.01 to -0.91 degrees C), increasing the daily T(b) cycle. Knut Schmidt-Nielsen described a similar pattern in captive dromedaries deprived of water in hot conditions, which he interpreted as a strategy to conserve water. Our observations were made in winter and with water freely available. Dromedaries can apparently employ heterothermy for more than just water conservation. In the strenuous daily contests between rival bulls in rut, a lower T(b) early in the day should extend the time for which a contestant can challenge or defend before heat stress becomes a problem. Calculations show that lowering T(b) by even 0.6 degrees C extends that time by more than 30 min, and many daily minima during rut were lower than that. Because the eventual winner of contests gains or retains a herd of females, we speculate that cooler T(b) at the start of daily contests confers an advantage which translates directly into increased reproductive success.


Subject(s)
Body Temperature , Camelus/physiology , Sexual Behavior, Animal , Adaptation, Physiological , Animals , Circadian Rhythm , Female , Hypothermia , Male , Reproduction
3.
Exp Gerontol ; 43(8): 729-33, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18586080

ABSTRACT

The echidna Tachyglossus aculeatus is a monotreme mammal from Australia that is exceptionally long-living. Its documented maximum lifespan of 50 years is 3.7 times that predicted from its body mass. Other exceptionally long-living mammals (naked mole-rats and humans) are known to have peroxidation-resistant membrane composition, raising the question about echidnas. Phospholipids were extracted from skeletal muscle, liver and liver mitochondria of echidnas and fatty acid composition measured. As with other exceptionally long-living mammals, membrane lipids of echidna tissues were found to have a lower content of polyunsaturates and a higher content of monounsaturates than predicted for their body size. The peroxidation index (=peroxidation susceptibility) calculated from this membrane composition was lower-than-expected for their body size, indicating that the cellular membranes of echidnas would be peroxidation-resistant. Additionally when the calculated peroxidation index was plotted against maximum lifespan, the echidna values conformed to the relationship for mammals in general. These findings support the membrane pacemaker theory of aging and emphasise the potential importance of membrane fatty acid composition in aging and in the determination of maximum longevity.


Subject(s)
Lipid Peroxidation/physiology , Longevity/physiology , Tachyglossidae/physiology , Animals , Body Weight/physiology , Fatty Acids/analysis , Liver/chemistry , Membrane Lipids/analysis , Mitochondria, Liver/chemistry , Muscle, Skeletal/chemistry , Phospholipids/analysis
4.
J Comp Physiol B ; 177(7): 779-86, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17588165

ABSTRACT

Oxygen equilibrium curves and other respiratory-related variables were determined on blood from the flatback turtle (Natator depressus) and, for comparison, on some samples from the loggerhead turtle (Caretta caretta). The oxygen carrying capacity of the flatback turtle, 4.9-8.7 mmol l(-1) (n = 49), is at the high end of the range in diving reptiles. Oxygen affinity (P(50)) was similar in both species at 5% CO(2), ranging from 37 to 55 mmHg (43 mmHg +/- 5.3 SD, n = 24, 25 degrees C, pH 7.17) in flatbacks and 43-49 mmHg in loggerheads (46 mmHg +/- 2.0 SD, n = 7, 25 degrees C, pH 7.13), whereas at 2% CO(2), flatbacks had a higher oxygen affinity. The curves differed in sigmoidicity, with Hill n coefficients of 2.8 and 1.9 in flatbacks and loggerheads, respectively. The Bohr effect was small in both the species, consistent with results from other sea turtles. Lactate levels were high, perhaps because the samples were taken from turtles coming ashore to lay eggs. Flatbacks are rarely found in waters deeper than 45 m. It is suggested that they have a respiratory physiology particularly suited to sustain prolonged shallow dives.


Subject(s)
Diving/physiology , Oxygen/blood , Turtles/blood , Acid-Base Equilibrium/physiology , Animals , Blood Gas Analysis/veterinary , Calibration , Carbon Dioxide/blood , Carbon Dioxide/physiology , Female , Hemoglobins/analysis , Hemoglobins/physiology , Hydrogen-Ion Concentration , Lactates/blood , Oxygen/physiology , Respiration , Turtles/physiology
5.
J Exp Biol ; 209(Pt 5): 938-44, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16481582

ABSTRACT

Short-beaked echidnas have an impressive ability to submerge completely into soil or sand and remain there, cryptic, for long periods. This poses questions about how they manage their respiration, cut off from a free flow of gases. We measured the gradient in oxygen partial pressure (PO2) away from the snouts of buried echidnas and oxygen consumption (VO2) in five individuals under similar conditions, in two substrates with different air-filled porosities (fa). A theoretical diffusion model indicated that diffusion alone was insufficient to account for the flux of oxygen required to meet measured rates of VO2. However, it was noticed that echidnas often showed periodic movements of the anterior part of the body, as if such movements were a deliberate effort to flush the tidal air space surrounding their nostrils. These ;flushing movements' were subsequently found to temporarily increase the levels of interstitial oxygen in the soil around the head region. Flushing movements were more frequent while VO2 was higher during the burrowing process, and also in substrate with lower fa. We conclude that oxygen supply to buried echidnas is maintained by diffusion through the soil augmented by periodic flushing movements, which ventilate the tidal airspace that surrounds the nostrils.


Subject(s)
Respiration , Tachyglossidae/physiology , Animals , Motor Activity , Nose , Oxygen/chemistry , Soil/analysis
6.
Article in English | MEDLINE | ID: mdl-16406640

ABSTRACT

We investigated the capacity of two reptiles, an agamid lizard Pogona barbata and a chelid turtle Emydura signata, to compensate for the effects of temperature by making changes in their whole blood respiratory properties. This was accomplished by measuring the P50 (at 10, 20 and 30 degrees C), hematocrit (Hct), haemoglobin concentration ([Hb]) and mean cell haemoglobin concentration (MCHC) in field acclimatised and laboratory acclimated individuals. The acute effect of temperature on P50 in P. barbata, expressed as heat of oxygenation (deltaH), ranged from -16.8+/-1.84 to -28.5+/-2.73 kJ/mole. P50 of field acclimatised P. barbata increased significantly from early spring to summer at the test temperatures of 20 degrees C (43.1+/-1.2 to 48.8+/-2.1 mmHg) and 30 degrees C (54.7+/-1.2 to 65.2+/-2.3 mmHg), but showed no acclimation under laboratory conditions. For E. signata, deltaH ranged from -31.1+/-6.32 to -48.2+/-3.59 kJ/mole. Field acclimatisation and laboratory acclimation of P50 did not occur. However, in E. signata, there was a significant increase in [Hb] and MCHC from early spring to summer in turtles collected from the wild (1.0+/-0.1 to 1.7+/-0.2 mmol/L and 4.0+/-0.3 to 6.7+/-0.7 mmol/L, respectively).


Subject(s)
Blood/metabolism , Oxygen Consumption , Acclimatization , Animals , Body Temperature Regulation , Hematocrit , Hemoglobins/metabolism , Oxygen/metabolism , Reptiles , Seasons , Species Specificity , Temperature , Thermodynamics , Time Factors
7.
Physiol Biochem Zool ; 77(6): 982-97, 2004.
Article in English | MEDLINE | ID: mdl-15674771

ABSTRACT

Many elements of mammalian and avian thermoregulatory mechanisms are present in reptiles, and the changes involved in the transition to endothermy are more quantitative than qualitative. Drawing on our experience with reptiles and echidnas, we comment on that transition and on current theories about how it occurred. The theories divide into two categories, depending on whether selection pressures operated directly or indirectly on mechanisms producing heat. Both categories of theories focus on explaining the evolution of homeothermic endothermy but ignore heterothermy. However, noting that hibernation and torpor are almost certainly plesiomorphic (=ancestral, primitive), and that heterothermy is very common among endotherms, we propose that homeothermic endothermy evolved via heterothermy, with the earliest protoendotherms being facultatively endothermic and retaining their ectothermic capacity for "constitutional eurythermy." Thus, unlike current models for the evolution of endothermy that assume that hibernation and torpor are specialisations arising from homeothermic ancestry, and therefore irrelevant, we consider that they are central. We note the sophistication of thermoregulatory behavior and control in reptiles, including precise control over conductance, and argue that brooding endothermy seen in some otherwise ectothermic Boidae suggests an incipient capacity for facultative endothermy in reptiles. We suggest that the earliest insulation in protoendotherms may have been internal, arising from redistribution of the fat bodies that are typical of reptiles. We note that short-beaked echidnas provide a useful living model of what an (advanced) protoendotherm may have been like. Echidnas have the advantages of endothermy, including the capacity for homeothermic endothermy during incubation, but are very relaxed in their thermoregulatory precision and minimise energetic costs by using ectothermy facultatively when entering short- or long-term torpor. They also have a substantial layer of internal dorsal insulation. We favor theories about the evolution of endothermy that invoke direct selection for the benefits conferred by warmth, such as expanding daily activity into the night, higher capacities for sustained activity, higher digestion rates, climatic range expansion, and, not unrelated, control over incubation temperature and the benefits for parental care. We present an indicative, stepwise schema in which observed patterns of body temperature are a consequence of selection pressures, the underlying mechanisms, and energy optimization, and in which homeothermy results when it is energetically desirable rather than as the logical endpoint.


Subject(s)
Biological Evolution , Birds/physiology , Mammals/physiology , Thermogenesis/genetics , Thermogenesis/physiology , Adaptation, Physiological , Animals , Invertebrates/physiology , Reptiles/physiology
8.
Article in English | MEDLINE | ID: mdl-14667854

ABSTRACT

The routine occurrence of both short-term (daily) and long-term torpor (hibernation) in short-beaked echidnas, but not platypus, raises questions about the third monotreme genus, New Guinea's Zaglossus. We measured body temperatures (T(b)) with implanted data loggers over three and a half years in two captive Zaglossus bartoni at Taronga Zoo, Sydney. The modal T(b) of both long-beaks was 31 degrees C, similar to non-hibernating short-beaked echidnas, Tachyglossus aculeatus, in the wild (30-32 degrees C) and to platypus (32 degrees C), suggesting that this is characteristic of normothermic monotremes. T(b) cycled daily, usually over 2-4 degrees C. There were some departures from this pattern to suggest periods of inactivity but nothing to indicate the occurrence of long-term torpor. In contrast, two short-beaked echidnas monitored concurrently in the same pen showed extended periods of low T(b) in the cooler months (hibernation) and short periods of torpor at any time of the year, as they do in the wild. Whether torpor or hibernation occurs in Zaglossus in the wild or in juveniles remains unknown. However, given that the environment in this study was conducive to hibernation in short-beaks, which do not easily enter torpor in captivity, and their large size, we think that torpor in wild adult Zaglossus is unlikely.


Subject(s)
Body Temperature , Tachyglossidae/physiology , Animals , Body Temperature Regulation , Female , Monotremata/anatomy & histology , Monotremata/physiology , Seasons , Tachyglossidae/anatomy & histology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...