Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nutrients ; 14(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35565896

ABSTRACT

We implemented a multi-pronged strategy (MAX) involving chronic (2 weeks high carbohydrate [CHO] diet + gut-training) and acute (CHO loading + 90 g·h−1 CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON) in two groups of athletes. Nineteen elite male race walkers (MAX: 9; CON:10) undertook a 26 km race-walking session before and after the respective interventions to investigate gastrointestinal function (absorption capacity), integrity (epithelial injury), and symptoms (GIS). We observed considerable individual variability in responses, resulting in a statistically significant (p < 0.001) yet likely clinically insignificant increase (Δ 736 pg·mL−1) in I-FABP after exercise across all trials, with no significant differences in breath H2 across exercise (p = 0.970). MAX was associated with increased GIS in the second half of the exercise, especially in upper GIS (p < 0.01). Eighteen highly trained male and female distance runners (MAX: 10; CON: 8) then completed a 35 km run (28 km steady-state + 7 km time-trial) supported by either a slightly modified MAX or CON strategy. Inter-individual variability was observed, without major differences in epithelial cell intestinal fatty acid binding protein (I-FABP) or GIS, due to exercise, trial, or group, despite the 3-fold increase in exercise CHO intake in MAX post-intervention. The tight-junction (claudin-3) response decreased in both groups from pre- to post-intervention. Groups achieved a similar performance improvement from pre- to post-intervention (CON = 39 s [95 CI 15−63 s]; MAX = 36 s [13−59 s]; p = 0.002). Although this suggests that further increases in CHO availability above current guidelines do not confer additional advantages, limitations in our study execution (e.g., confounding loss of BM in several individuals despite a live-in training camp environment and significant increases in aerobic capacity due to intensified training) may have masked small differences. Therefore, athletes should meet the minimum CHO guidelines for training and competition goals, noting that, with practice, increased CHO intake can be tolerated, and may contribute to performance outcomes.


Subject(s)
Dietary Carbohydrates , Physical Endurance , Athletes , Diet , Female , Humans , Male , Physical Endurance/physiology , Walking/physiology
2.
Int J Sport Nutr Exerc Metab ; 31(4): 314-320, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34030124

ABSTRACT

Gastrointestinal disturbances are one of the most common issues for endurance athletes during training and competition in the heat. The relationship between typical dietary intake or nutritional interventions and perturbations in or maintenance of gut integrity is unclear. Twelve well-trained male endurance athletes (peak oxygen consumption = 61.4 ± 7.0 ml·kg-1·min-1) completed two trials in a randomized order in 35 °C (heat) and 21 °C (thermoneutral) conditions and kept a detailed nutritional diary for eight consecutive days between the two trials. The treadmill running trials consisted of 15 min at 60% peak oxygen consumption, 15 min at 75% peak oxygen consumption, followed by 8 × 1-min high-intensity efforts. Venous blood samples were taken at the baseline, at the end of each of the three exercise stages, and 1 hr postexercise to measure gut integrity and the permeability biomarker concentration for intestinal fatty-acid-binding protein, lipopolysaccharide, and lipopolysaccharide-binding protein. The runners self-reported gut symptoms 1 hr postexercise and 3 days postexercise. The heat condition induced large (45-370%) increases in intestinal fatty-acid-binding protein, lipopolysaccharide-binding protein, and lipopolysaccharide concentrations compared with the baseline, but induced mild gastrointestinal symptoms. Carbohydrate and polyunsaturated fat intake 24 hr preexercise were associated with less lipopolysaccharide translocation. Protein, carbohydrate, total fat, and polyunsaturated fat intake (8 days) were positively associated with the percentage increase of intestinal fatty-acid-binding protein in both conditions (range of correlations, 95% confidence interval = .62-.93 [.02, .98]). Typical nutrition intake partly explained increases in biomarkers and the attenuation of symptoms induced by moderate- and high-intensity exercise under both heat and thermoneutral conditions.


Subject(s)
Eating , Gastrointestinal Tract/physiology , Hot Temperature , Physical Exertion/physiology , Running/physiology , Adult , Biomarkers/blood , Confidence Intervals , Cross-Over Studies , Diet Records , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Energy Intake , Fatty Acid-Binding Proteins/blood , Fatty Acids, Unsaturated/administration & dosage , Humans , Lipopolysaccharides/blood , Male , Oxygen Consumption , Physical Conditioning, Human/physiology , Physical Endurance , Sports Nutritional Physiological Phenomena , Time Factors
3.
Int J Sports Physiol Perform ; 16(5): 704-710, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33361496

ABSTRACT

PURPOSE: The risk of exercise-induced endotoxemia is increased in the heat and is primarily attributable to changes in gut permeability resulting in the translocation of lipopolysaccharides (LPS) into the circulation. The purpose of this study was to quantify the acute changes in gut permeability and LPS translocation during submaximal continuous and high-intensity interval exercise under heat stress. METHODS: A total of 12 well-trained male runners (age 37 [7] y, maximal oxygen uptake [VO2max] 61.0 [6.8] mL·min-1·kg-1) undertook 2 treadmill runs of 2 × 15-minutes at 60% and 75% VO2max and up to 8 × 1-minutes at 95% VO2max in HOT (34°C, 68% relative humidity) and COOL (18°C, 57% relative humidity) conditions. Venous blood samples were collected at the baseline, following each running intensity, and 1 hour postexercise. Blood samples were analyzed for markers of intestinal permeability (LPS, LPS binding protein, and intestinal fatty acid-binding protein). RESULTS: The increase in LPS binding protein following each exercise intensity in the HOT condition was 4% (5.3 µg·mL-1, 2.4-8.4; mean, 95% confidence interval, P < .001), 32% (4.6 µg·mL-1, 1.8-7.4; P = .002), and 30% (3.0 µg·mL-1, 0.03-5.9; P = .047) greater than in the COOL condition. LPS was 69% higher than baseline following running at 75% VO2max in the HOT condition (0.2 endotoxin units·mL-1, 0.1-0.4; P = .011). Intestinal fatty acid-binding protein increased 43% (2.1 ng·mL-1, 0.1-4.2; P = .04) 1 hour postexercise in HOT compared with the COOL condition. CONCLUSIONS: Small increases in LPS concentration during exercise in the heat and subsequent increases in intestinal fatty acid-binding protein and LPS binding protein indicate a capacity to tolerate acute, transient intestinal disturbance in well-trained endurance runners.


Subject(s)
Endotoxemia/blood , Exercise/physiology , Heat Stress Disorders , Intestinal Mucosa/metabolism , Oxygen Consumption , Running/physiology , Adult , Exercise Test , Hot Temperature , Humans , Male , Physical Exertion
4.
Biophys Rev ; 12(4): 865-878, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32696300

ABSTRACT

Excitation-contraction coupling links excitation of the sarcolemmal surface membrane to mechanical contraction. In the heart this link is established via a Ca2+-induced Ca2+ release process, which, following sarcolemmal depolarisation, prompts Ca2+ release from the sarcoplasmic reticulum (SR) though the ryanodine receptor (RyR2). This substantially raises the cytoplasmic Ca2+ concentration to trigger systole. In diastole, Ca2+ is removed from the cytoplasm, primarily via the sarcoplasmic-endoplasmic reticulum Ca2+-dependent ATPase (SERCA) pump on the SR membrane, returning Ca2+ to the SR store. Ca2+ movement across the SR is thus fundamental to the systole/diastole cycle and plays an essential role in maintaining cardiac contractile function. Altered SR Ca2+ homeostasis (due to disrupted Ca2+ release, storage, and reuptake pathways) is a central tenet of heart failure and contributes to depressed contractility, impaired relaxation, and propensity to arrhythmia. This review will focus on the molecular mechanisms that underlie asynchronous Ca2+ cycling around the SR in the failing heart. Further, this review will illustrate that the combined effects of expression changes and disruptions to RyR2 and SERCA2a regulatory pathways are critical to the pathogenesis of heart failure.

5.
J Cell Sci ; 132(10)2019 05 21.
Article in English | MEDLINE | ID: mdl-31028179

ABSTRACT

Mutations in the cardiac ryanodine receptor Ca2+ release channel (RyR2) can cause deadly ventricular arrhythmias and atrial fibrillation (AF). The RyR2-P2328S mutation produces catecholaminergic polymorphic ventricular tachycardia (CPVT) and AF in hearts from homozygous RyR2P2328S/P2328S (denoted RyR2S/S) mice. We have now examined P2328S RyR2 channels from RyR2S/S hearts. The activity of wild-type (WT) and P2328S RyR2 channels was similar at a cytoplasmic [Ca2+] of 1 mM, but P2328S RyR2 was significantly more active than WT at a cytoplasmic [Ca2+] of 1 µM. This was associated with a >10-fold shift in the half maximal activation concentration (AC50) for Ca2+ activation, from ∼3.5 µM Ca2+ in WT RyR2 to ∼320 nM in P2328S channels and an unexpected >1000-fold shift in the half maximal inhibitory concentration (IC50) for inactivation from ∼50 mM in WT channels to ≤7 µM in P2328S channels, which is into systolic [Ca2+] levels. Unexpectedly, the shift in Ca2+ activation was not associated with changes in sub-conductance activity, S2806 or S2814 phosphorylation or the level of FKBP12 (also known as FKBP1A) bound to the channels. The changes in channel activity seen with the P2328S mutation correlate with altered Ca2+ homeostasis in myocytes from RyR2S/S mice and the CPVT and AF phenotypes.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Arrhythmias, Cardiac/metabolism , Atrial Fibrillation/metabolism , Ion Channel Gating/physiology , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Arrhythmias, Cardiac/genetics , Atrial Fibrillation/genetics , Calcium/metabolism , Cytoplasm/metabolism , Mice , Myocytes, Cardiac/metabolism , Phosphorylation , Ryanodine Receptor Calcium Release Channel/genetics
6.
J Mol Cell Cardiol ; 130: 96-106, 2019 05.
Article in English | MEDLINE | ID: mdl-30928430

ABSTRACT

Calmodulin (CaM) is a Ca-binding protein that binds to, and can directly inhibit cardiac ryanodine receptor calcium release channels (RyR2). Animal studies have shown that RyR2 hyperphosphorylation reduces CaM binding to RyR2 in failing hearts, but data are lacking on how CaM regulates human RyR2 and how this regulation is affected by RyR2 phosphorylation. Physiological concentrations of CaM (100 nM) inhibited the diastolic activity of RyR2 isolated from failing human hearts by ~50% but had no effect on RyR2 from healthy human hearts. Using FRET between donor-FKBP12.6 and acceptor-CaM bound to RyR2, we determined that CaM binds to RyR2 from healthy human heart with a Kd = 121 ±â€¯14 nM. Ex-vivo phosphorylation/dephosphorylation experiments suggested that the divergent CaM regulation of healthy and failing human RyR2 was caused by differences in RyR2 phosphorylation by protein kinase A and Ca-CaM-dependent kinase II. Ca2+-spark measurements in murine cardiomyocytes harbouring RyR2 phosphomimetic or phosphoablated mutants at S2814 and S2808 suggest that phosphorylation of residues corresponding to either human RyR2-S2808 or S2814 is both necessary and sufficient for RyR2 regulation by CaM. Our results challenge the current concept that CaM universally functions as a canonical inhibitor of RyR2 across species. Rather, CaM's biological action on human RyR2 appears to be more nuanced, with inhibitory activity only on phosphorylated RyR2 channels, which occurs during exercise or in patients with heart failure.


Subject(s)
Calmodulin/metabolism , Heart Failure/metabolism , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Heart Failure/pathology , Humans , Myocytes, Cardiac/pathology , Phosphorylation , Protein Binding
7.
F1000Res ; 72018.
Article in English | MEDLINE | ID: mdl-30542613

ABSTRACT

The ryanodine receptor calcium release channel is central to cytoplasmic Ca 2+ signalling in skeletal muscle, the heart, and many other tissues, including the central nervous system, lymphocytes, stomach, kidney, adrenal glands, ovaries, testes, thymus, and lungs. The ion channel protein is massive (more than 2.2 MDa) and has a structure that has defied detailed determination until recent developments in cryo-electron microscopy revealed much of its structure at near-atomic resolution. The availability of this high-resolution structure has provided the most significant advances in understanding the function of the ion channel in the past 30 years. We can now visualise the molecular environment of individual amino acid residues that form binding sites for essential modulators of ion channel function and determine its role in Ca 2+ signalling. Importantly, the structure has revealed the structural environment of the many deletions and point mutations that disrupt Ca 2+ signalling in skeletal and cardiac myopathies and neuropathies. The implications are of vital importance to our understanding of the molecular basis of the ion channel's function and for the design of therapies to counteract the effects of ryanodine receptor-associated disorders.


Subject(s)
Calcium Signaling/genetics , Ryanodine Receptor Calcium Release Channel/physiology , Animals , Binding Sites/genetics , Cryoelectron Microscopy , Humans , Protein Conformation , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/genetics
8.
Int J Biochem Cell Biol ; 101: 49-53, 2018 08.
Article in English | MEDLINE | ID: mdl-29775742

ABSTRACT

Calcium release from internal stores is a quintessential event in excitation-contraction coupling in cardiac and skeletal muscle. The ryanodine receptor Ca2+ release channel is embedded in the internal sarcoplasmic reticulum Ca2+ store, which releases Ca2+ into the cytoplasm, enabling contraction. Ryanodine receptors form the hub of a macromolecular complex extending from the extracellular space to the sarcoplasmic reticulum lumen. Ryanodine receptor activity is influenced by the integrated effects of associated co-proteins, ions, and post-translational phosphor and redox modifications. In healthy muscle, ryanodine receptors are phosphorylated and redox modified to basal levels, to support cellular function. A pathological increase in the degree of both post-translational modifications disturbs intracellular Ca2+ signalling, and is implicated in various cardiac and skeletal disorders. This review summarises our current understanding of the mechanisms linking ryanodine receptor post-translational modification to heart failure and skeletal myopathy and highlights the challenges and controversies within the field.


Subject(s)
Calcium/metabolism , Heart Failure/metabolism , Myotonia Congenita/metabolism , Protein Processing, Post-Translational , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Calcium Signaling , Excitation Contraction Coupling/physiology , Heart Failure/genetics , Heart Failure/pathology , Humans , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myocardium/metabolism , Myocardium/pathology , Myotonia Congenita/genetics , Myotonia Congenita/pathology , Phosphorylation , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/metabolism
10.
Mol Pharmacol ; 92(5): 576-587, 2017 11.
Article in English | MEDLINE | ID: mdl-28916620

ABSTRACT

The chemotherapeutic anthracycline metabolite doxorubicinol (doxOL) has been shown to interact with and disrupt the function of the cardiac ryanodine receptor Ca2+ release channel (RyR2) in the sarcoplasmic reticulum (SR) membrane and the SR Ca2+ binding protein calsequestrin 2 (CSQ2). Normal increases in RyR2 activity in response to increasing diastolic SR [Ca2+] are influenced by CSQ2 and are disrupted in arrhythmic conditions. Therefore, we explored the action of doxOL on RyR2's response to changes in luminal [Ca2+] seen during diastole. DoxOL abolished the increase in RyR2 activity when luminal Ca2+ was increased from 0.1 to 1.5 mM. This was not due to RyR2 oxidation, but depended entirely on the presence of CSQ2 in the RyR2 complex. DoxOL binding to CSQ2 reduced both the Ca2+ binding capacity of CSQ2 (by 48%-58%) and its aggregation, and lowered CSQ2 association with the RyR2 complex by 67%-77%. Each of these effects on CSQ2, and the lost RyR2 response to changes in luminal [Ca2+], was duplicated by exposing native RyR2 channels to subphysiologic (≤1.0 µM) luminal [Ca2+]. We suggest that doxOL and low luminal Ca2+ both disrupt the CSQ2 polymer, and that the association of the monomeric protein with the RyR2 complex shifts the increase in RyR2 activity with increasing luminal [Ca2+] away from the physiologic [Ca2+] range. Subsequently, these changes may render the channel insensitive to changes of luminal Ca2+ that occur through the cardiac cycle. The altered interactions between CSQ2, triadin, and/or junctin and RyR2 may produce an arrhythmogenic substrate in anthracycline-induced cardiotoxicity.


Subject(s)
Anthracyclines/metabolism , Calcium/metabolism , Calsequestrin/metabolism , Doxorubicin/analogs & derivatives , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/physiology , Animals , Anthracyclines/pharmacology , Calcium/physiology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Calsequestrin/pharmacology , Cell Culture Techniques/methods , Dose-Response Relationship, Drug , Doxorubicin/metabolism , Doxorubicin/pharmacology , Drug Interactions/physiology , Myocytes, Cardiac/drug effects , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sheep
11.
J Cell Sci ; 130(20): 3588-3600, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28851804

ABSTRACT

Ryanodine receptor (RyR) Ca2+ channels are central to striated muscle function and influence signalling in neurons and other cell types. Beneficially low RyR activity and maximum conductance opening may be stabilised when RyRs bind to FK506 binding proteins (FKBPs) and destabilised by FKBP dissociation, with submaximal opening during RyR hyperactivity associated with myopathies and neurological disorders. However, the correlation with submaximal opening is debated and quantitative evidence is lacking. Here, we have measured altered FKBP binding to RyRs and submaximal activity with addition of wild-type (WT) CLIC2, an inhibitory RyR ligand, or its H101Q mutant that hyperactivates RyRs, which probably causes cardiac and intellectual abnormalities. The proportion of sub-conductance opening increases with WT and H101Q CLIC2 and is correlated with reduced FKBP-RyR association. The sub-conductance opening reduces RyR currents in the presence of WT CLIC2. In contrast, sub-conductance openings contribute to excess RyR 'leak' with H101Q CLIC2. There are significant FKBP and RyR isoform-specific actions of CLIC2, rapamycin and FK506 on FKBP-RyR association. The results show that FKBPs do influence RyR gating and would contribute to excess Ca2+ release in this CLIC2 RyR channelopathy.


Subject(s)
Chloride Channels/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Tacrolimus Binding Proteins/metabolism , Animals , Ion Channel Gating , Membrane Potentials , Mutation, Missense , Protein Binding , Rabbits , Sheep, Domestic
13.
Adv Pharmacol ; 79: 287-324, 2017.
Article in English | MEDLINE | ID: mdl-28528672

ABSTRACT

Ryanodine receptor (RyR) ion channels are essential for skeletal and cardiac muscle function. Their knockout leads to perinatal death from respiratory and cardiac failure. Acquired changes or mutations in the protein cause debilitating skeletal myopathy and cardiac arrhythmia which can be deadly. Knowledge of the pharmacology of RyR channels is central to developing effective and specific treatments of these myopathies. The ion channel is a >2.2MDa homotetamer with distinct structural and functional characteristics giving rise to a myriad of regulatory sites that are potential therapeutic targets. Australian researchers have been intimately involved in the exploration of the proteins since their identification in the mid-1980s. We discuss major aspects of RyR physiology and pharmacology that have been tackled in Australian laboratories. Specific areas of interest include ultrastructural aspects and mechanisms of RyR activation in excitation-contraction (EC) coupling and related pharmacological developments, regulation of RyRs by divalent cations, by associated proteins including the FK506-binding proteins, by redox factors and phosphorylation. We consider adverse effects of anthracycline chemotherapeutic drugs on cardiac RyRs. Phenotypes associated with RyR mutations are discussed with current and developing therapeutic approaches for treating the underlying RyR dysfunction.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Muscular Diseases/physiopathology , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Arrhythmias, Cardiac/metabolism , Humans
14.
Clin Exp Pharmacol Physiol ; 44(1): 3-12, 2017 01.
Article in English | MEDLINE | ID: mdl-27696487

ABSTRACT

The core skeletal muscle ryanodine receptor (RyR1) calcium release complex extends through three compartments of the muscle fibre, linking the extracellular environment through the cytoplasmic junctional gap to the lumen of the internal sarcoplasmic reticulum (SR) calcium store. The protein complex is essential for skeletal excitation-contraction (EC)-coupling and skeletal muscle function. Its importance is highlighted by perinatal death if any one of the EC-coupling components are missing and by myopathies associated with mutation of any of the proteins. The proteins essential for EC-coupling include the DHPR α1S subunit in the transverse tubule membrane, the DHPR ß1a subunit in the cytosol and the RyR1 ion channel in the SR membrane. The other core proteins are triadin and junctin and calsequestrin, associated mainly with SR. These SR proteins are not essential for survival but exert structural and functional influences that modify the gain of EC-coupling and maintain normal muscle function. This review summarises our current knowledge of the individual protein/protein interactions within the core complex and their overall contribution to EC-coupling. We highlight significant areas that provide a continuing challenge for the field. Additional important components of the Ca2+ release complex, such as FKBP12, calmodulin, S100A1 and Stac3 are identified and reviewed elsewhere.


Subject(s)
Calcium/metabolism , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Amino Acid Sequence , Animals , Humans , Muscle Proteins/chemistry , Muscle Proteins/genetics , Muscle Proteins/metabolism , Protein Binding/physiology , Protein Structure, Secondary , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/genetics
16.
Skelet Muscle ; 5: 23, 2015.
Article in English | MEDLINE | ID: mdl-26203350

ABSTRACT

BACKGROUND: Although excitation-contraction (EC) coupling in skeletal muscle relies on physical activation of the skeletal ryanodine receptor (RyR1) Ca(2+) release channel by dihydropyridine receptors (DHPRs), the activation pathway between the DHPR and RyR1 remains unknown. However, the pathway includes the DHPR ß1a subunit which is integral to EC coupling and activates RyR1. In this manuscript, we explore the isoform specificity of ß1a activation of RyRs and the ß1a binding site on RyR1. METHODS: We used lipid bilayers to measure single channel currents and whole cell patch clamp to measure L-type Ca(2+) currents and Ca(2+) transients in myotubes. RESULTS: We demonstrate that both skeletal RyR1 and cardiac RyR2 channels in phospholipid bilayers are activated by 10-100 nM of the ß1a subunit. Activation of RyR2 by 10 nM ß1a was less than that of RyR1, suggesting a reduced affinity of RyR2 for ß1a. A reduction in activation was also observed when 10 nM ß1a was added to the alternatively spliced (ASI(-)) isoform of RyR1, which lacks ASI residues (A3481-Q3485). It is notable that the equivalent region of RyR2 also lacks four of five ASI residues, suggesting that the absence of these residues may contribute to the reduced 10 nM ß1a activation observed for both RyR2 and ASI(-)RyR1 compared to ASI(+)RyR1. We also investigated the influence of a polybasic motif (PBM) of RyR1 (K3495KKRRDGR3502) that is located immediately downstream from the ASI residues and has been implicated in EC coupling. We confirmed that neutralizing the basic residues in the PBM (RyR1 K-Q) results in an ~50 % reduction in Ca(2+) transient amplitude following expression in RyR1-null (dyspedic) myotubes and that the PBM is also required for ß1a subunit activation of RyR1 channels in lipid bilayers. These results suggest that the removal of ß1a subunit interaction with the PBM in RyR1 could contribute directly to ~50 % of the Ca(2+) release generated during skeletal EC coupling. CONCLUSIONS: We conclude that the ß1a subunit likely binds to a region that is largely conserved in RyR1 and RyR2 and that this region is influenced by the presence of the ASI residues and the PBM in RyR1.

17.
Skelet Muscle ; 5: 6, 2015.
Article in English | MEDLINE | ID: mdl-25861445

ABSTRACT

BACKGROUND: Skeletal muscle function depends on calcium signaling proteins in the sarcoplasmic reticulum (SR), including the calcium-binding protein calsequestrin (CSQ), the ryanodine receptor (RyR) calcium release channel, and skeletal triadin 95 kDa (trisk95) and junctin, proteins that bind to calsequestrin type 1 (CSQ1) and ryanodine receptor type 1 (RyR1). CSQ1 inhibits RyR1 and communicates store calcium load to RyR1 channels via trisk95 and/or junctin. METHODS: In this manuscript, we test predictions that CSQ1's acidic C-terminus contains binding sites for trisk95 and junctin, the major calcium binding domain, and that it determines CSQ1's ability to regulate RyR1 activity. RESULTS: Progressive alanine substitution of C-terminal acidic residues of CSQ1 caused a parallel reduction in the calcium binding capacity but did not significantly alter CSQ1's association with trisk95/junctin or influence its inhibition of RyR1 activity. Deletion of the final seven residues in the C-terminus significantly hampered calcium binding, significantly reduced CSQ's association with trisk95/junctin and decreased its inhibition of RyR1. Deletion of the full C-terminus further reduced calcium binding to CSQ1 altered its association with trisk95 and junctin and abolished its inhibition of RyR1. CONCLUSIONS: The correlation between the number of residues mutated/deleted and binding of calcium, trisk95, and junctin suggests that binding of each depends on diffuse ionic interactions with several C-terminal residues and that these interactions may be required for CSQ1 to maintain normal muscle function.

18.
J Cell Sci ; 128(5): 951-63, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25609705

ABSTRACT

Junctin, a non-catalytic splice variant encoded by the aspartate-ß-hydroxylase (Asph) gene, is inserted into the membrane of the sarcoplasmic reticulum (SR) Ca(2+) store where it modifies Ca(2+) signalling in the heart and skeletal muscle through its regulation of ryanodine receptor (RyR) Ca(2+) release channels. Junctin is required for normal muscle function as its knockout leads to abnormal Ca(2+) signalling, muscle dysfunction and cardiac arrhythmia. However, the nature of the molecular interaction between junctin and RyRs is largely unknown and was assumed to occur only in the SR lumen. We find that there is substantial binding of RyRs to full junctin, and the junctin luminal and, unexpectedly, cytoplasmic domains. Binding of these different junctin domains had distinct effects on RyR1 and RyR2 activity: full junctin in the luminal solution increased RyR channel activity by ∼threefold, the C-terminal luminal interaction inhibited RyR channel activity by ∼50%, and the N-terminal cytoplasmic binding produced an ∼fivefold increase in RyR activity. The cytoplasmic interaction between junctin and RyR is required for luminal binding to replicate the influence of full junctin on RyR1 and RyR2 activity. The C-terminal domain of junctin binds to residues including the S1-S2 linker of RyR1 and N-terminal domain of junctin binds between RyR1 residues 1078 and 2156.


Subject(s)
Calcium Signaling/physiology , Calcium-Binding Proteins/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Calcium-Binding Proteins/genetics , Cell Line , Dogs , Protein Binding , Protein Structure, Tertiary , Ryanodine Receptor Calcium Release Channel/genetics
19.
J Gen Physiol ; 144(3): 263-71, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25156119

ABSTRACT

Regulation of the cardiac ryanodine receptor (RyR2) by intracellular Ca(2+) and Mg(2+) plays a key role in determining cardiac contraction and rhythmicity, but their role in regulating the human RyR2 remains poorly defined. The Ca(2+)- and Mg(2+)-dependent regulation of human RyR2 was recorded in artificial lipid bilayers in the presence of 2 mM ATP and compared with that in two commonly used animal models for RyR2 function (rat and sheep). Human RyR2 displayed cytoplasmic Ca(2+) activation (K(a) = 4 µM) and inhibition by cytoplasmic Mg(2+) (K(i) = 10 µM at 100 nM Ca(2+)) that was similar to RyR2 from rat and sheep obtained under the same experimental conditions. However, in the presence of 0.1 mM Ca(2+), RyR2s from human were 3.5-fold less sensitive to cytoplasmic Mg(2+) inhibition than those from sheep and rat. The K(a) values for luminal Ca(2+) activation were similar in the three species (35 µM for human, 12 µM for sheep, and 10 µM for rat). From the relationship between open probability and luminal [Ca(2+)], the peak open probability for the human RyR2 was approximately the same as that for sheep, and both were ~10-fold greater than that for rat RyR2. Human RyR2 also showed the same sensitivity to luminal Mg(2+) as that from sheep, whereas rat RyR2 was 10-fold more sensitive. In all species, modulation of RyR2 gating by luminal Ca(2+) and Mg(2+) only occurred when cytoplasmic [Ca(2+)] was <3 µM. The activation response of RyR2 to luminal and cytoplasmic Ca(2+) was strongly dependent on the Mg(2+) concentration. Addition of physiological levels (1 mM) of Mg(2+) raised the K(a) for cytoplasmic Ca(2+) to 30 µM (human and sheep) or 90 µM (rat) and raised the K(a) for luminal Ca(2+) to ~1 mM in all species. This is the first report of the regulation by Ca(2+) and Mg(2+) of native RyR2 receptor activity from healthy human hearts.


Subject(s)
Calcium/metabolism , Cytoplasm/metabolism , Magnesium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Adult , Animals , Female , Humans , Ion Channel Gating , Male , Middle Aged , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley , Sheep
20.
J Cell Sci ; 127(Pt 20): 4531-41, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25146393

ABSTRACT

Here, we report the impact of redox potential on isolated cardiac ryanodine receptor (RyR2) channel activity and its response to physiological changes in luminal [Ca(2+)]. Basal leak from the sarcoplasmic reticulum is required for normal Ca(2+) handling, but excess diastolic Ca(2+) leak attributed to oxidative stress is thought to lower the threshold of RyR2 for spontaneous sarcoplasmic reticulum Ca(2+) release, thus inducing arrhythmia in pathological situations. Therefore, we examined the RyR2 response to luminal [Ca(2+)] under reducing or oxidising cytoplasmic redox conditions. Unexpectedly, as luminal [Ca(2+)] increased from 0.1 to 1.5 mM, RyR2 activity declined when pretreated with cytoplasmic 1 mM DTT or buffered with GSH∶GSSG to a normal reduced cytoplasmic redox potential (-220 mV). Conversely, with 20 µM cytoplasmic 4,4'-DTDP or buffering of the redox potential to an oxidising value (-180 mV), RyR2 activity increased with increasing luminal [Ca(2+)]. The luminal redox potential was constant at -180 mV in each case. These responses to luminal [Ca(2+)] were maintained with cytoplasmic 2 mM Na2ATP or 5 mM MgATP (1 mM free Mg(2+)). Overall, the results suggest that the redox potential in the RyR2 junctional microdomain is normally more oxidised than that of the bulk cytoplasm.


Subject(s)
Arrhythmias, Cardiac/metabolism , Cytoplasm/metabolism , Membrane Microdomains/metabolism , Myocytes, Cardiac/physiology , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Calcium/metabolism , Calcium Signaling , Cells, Cultured , Cellular Microenvironment , Dogs , Membrane Potentials , Oxidation-Reduction , Oxidative Stress , Ryanodine Receptor Calcium Release Channel/chemistry , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...