Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Brain Topogr ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722465

ABSTRACT

This study describes electroencephalography (EEG) measurements during a simple finger movement in people with stroke to understand how temporal patterns of cortical activation and network connectivity align with prolonged muscle contraction at the end of a task. We investigated changes in the EEG temporal patterns in the beta band (13-26 Hz) of people with chronic stroke (N = 10, 7 F/3 M) and controls (N = 10, 7 F/3 M), during and after a cued movement of the index finger. We quantified the change in beta band EEG power relative to baseline as activation at each electrode and the change in task-based phase-locking value (tbPLV) and beta band task-based coherence (tbCoh) relative to baseline coherence as connectivity between EEG electrodes. Finger movements were associated with a decrease in beta power (event related desynchronization (ERD)) followed by an increase in beta power (event related resynchronization (ERS)). The ERS in the post task period was lower in the stroke group (7%), compared to controls (44%) (p < 0.001) and the transition from ERD to ERS was delayed in the stroke group (1.43 s) compared to controls (0.90 s) in the C3 electrode (p = 0.007). In the same post movement period, the stroke group maintained a heightened tbPLV (p = 0.030 for time to baseline of the C3:Fz electrode pair) and did not show the decrease in connectivity in electrode pair C3:Fz that was observed in controls (tbPLV: p = 0.006; tbCoh: p = 0.023). Our results suggest that delays in cortical deactivation patterns following movement coupled with changes in the time course of connectivity between the sensorimotor and frontal cortices in the stroke group might explain clinical observations of prolonged muscle activation in people with stroke. This prolonged activation might be attributed to the combination of cortical reorganization and changes to sensory feedback post-stroke.

2.
Neuroimage ; 290: 120569, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38461959

ABSTRACT

Functional near infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) both measure the hemodynamic response, and so both imaging modalities are expected to have a strong correspondence in regions of cortex adjacent to the scalp. To assess whether fNIRS can be used clinically in a manner similar to fMRI, 22 healthy adult participants underwent same-day fMRI and whole-head fNIRS testing while they performed separate motor (finger tapping) and visual (flashing checkerboard) tasks. Analyses were conducted within and across subjects for each imaging approach, and regions of significant task-related activity were compared on the cortical surface. The spatial correspondence between fNIRS and fMRI detection of task-related activity was good in terms of true positive rate, with fNIRS overlap of up to 68 % of the fMRI for analyses across subjects (group analysis) and an average overlap of up to 47.25 % for individual analyses within subject. At the group level, the positive predictive value of fNIRS was 51 % relative to fMRI. The positive predictive value for within subject analyses was lower (41.5 %), reflecting the presence of significant fNIRS activity in regions without significant fMRI activity. This could reflect task-correlated sources of physiologic noise and/or differences in the sensitivity of fNIRS and fMRI measures to changes in separate (vs. combined) measures of oxy and de-oxyhemoglobin. The results suggest whole-head fNIRS as a noninvasive imaging modality with promising clinical utility for the functional assessment of brain activity in superficial regions of cortex physically adjacent to the skull.


Subject(s)
Magnetic Resonance Imaging , Spectroscopy, Near-Infrared , Adult , Humans , Magnetic Resonance Imaging/methods , Spectroscopy, Near-Infrared/methods , Hemodynamics/physiology , Skull
3.
PLoS One ; 18(12): e0266586, 2023.
Article in English | MEDLINE | ID: mdl-38127998

ABSTRACT

The purpose of this study was to characterize changes in cortical activity and connectivity in stroke survivors when vibration is applied to the wrist flexor tendons during a visuomotor tracking task. Data were collected from 10 chronic stroke participants and 10 neurologically-intact controls while tracking a target through a figure-8 pattern in the horizontal plane. Electroencephalography (EEG) was used to measure cortical activity (beta band desynchronization) and connectivity (beta band task-based coherence) with movement kinematics and performance error also being recorded during the task. All participants came into our lab on two separate days and performed three blocks (16 trials each, 48 total trials) of tracking, with the middle block including vibration or sham applied at the wrist flexor tendons. The order of the sessions (Vibe vs. Sham) was counterbalanced across participants to prevent ordering effects. During the Sham session, cortical activity increased as the tracking task progressed (over blocks). This effect was reduced when vibration was applied to controls. In contrast, vibration increased cortical activity during the vibration period in participants with stroke. Cortical connectivity increased during vibration, with larger effect sizes in participants with stroke. Changes in tracking performance, standard deviation of hand speed, were observed in both control and stroke groups. Overall, EEG measures of brain activity and connectivity provided insight into effects of vibration on brain control of a visuomotor task. The increases in cortical activity and connectivity with vibration improved patterns of activity in people with stroke. These findings suggest that reactivation of normal cortical networks via tendon vibration may be useful during physical rehabilitation of stroke patients.


Subject(s)
Stroke , Wrist , Humans , Wrist/physiology , Arm/physiology , Vibration , Tendons/physiology , Brain Damage, Chronic , Electroencephalography
4.
Exp Brain Res ; 241(1): 231-247, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36469052

ABSTRACT

We examined a key aspect of sensorimotor skill: the capability to correct performance errors that arise mid-movement. Participants grasped the handle of a robot that imposed a nominal viscous resistance to hand movement. They watched a target move pseudo-randomly just above the horizontal plane of hand motion and initiated quick interception movements when cued. On some trials, the robot's viscosity or the target's speed changed without warning coincident with the GO cue. We fit a sum-of-Gaussians model to mechanical power measured at the handle to determine the number, magnitude, and relative timing of submovements occurring in each interception attempt. When a single submovement successfully intercepted the target, capture times averaged 410 ms. Sometimes, two or more submovements were required. Initial error corrections typically occurred before feedback could indicate the target had been captured or missed. Error corrections occurred sooner after movement onset in response to mechanical viscosity increases (at 154 ms) than to unprovoked errors on control trials (215 ms). Corrections occurred later (272 ms) in response to viscosity decreases. The latency of corrections for target speed changes did not differ from those in control trials. Remarkably, these early error corrections accommodated the altered testing conditions; speed/viscosity increases elicited more vigorous corrections than in control trials with unprovoked errors; speed/viscosity decreases elicited less vigorous corrections. These results suggest that the brain monitors and predicts the outcome of evolving movements, rapidly infers causes of mid-movement errors, and plans and executes corrections-all within 300 ms of movement onset.


Subject(s)
Motion Perception , Psychomotor Performance , Humans , Psychomotor Performance/physiology , Haptic Technology , Hand/physiology , Motion Perception/physiology , Movement
5.
J Neuroeng Rehabil ; 19(1): 90, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35978431

ABSTRACT

BACKGROUND: People with multiple sclerosis (PwMS) have balance deficits while ambulating through environments that contain moving objects or visual manipulations to perceived self-motion. However, their ability to parse object from self-movement has not been explored. The purpose of this research was to examine the effect of medial-lateral oscillations of the visual field and of objects within the scene on gait in PwMS and healthy age-matched controls using virtual reality (VR). METHODS: Fourteen PwMS (mean age 49 ± 11 years, functional gait assessment score of 27.8 ± 1.8, and Berg Balance scale score 54.7 ± 1.5) and eleven healthy controls (mean age: 53 ± 12 years) participated in this study. Dynamic balance control was assessed while participants walked on a treadmill at a self-selected speed while wearing a VR headset that projected an immersive forest scene. Visual conditions consisted of (1) no visual manipulations (speed-matched anterior/posterior optical flow), (2) 0.175 m mediolateral translational oscillations of the scene that consisted of low pairing (0.1 and 0.31 Hz) or (3) high pairing (0.15 and 0.465 Hz) frequencies, (4) 5 degree medial-lateral rotational oscillations of virtual trees at a low frequency pairing (0.1 and 0.31 Hz), and (5) a combination of the tree and scene movements in (3) and (4). RESULTS: We found that both PwMS and controls exhibited greater instability and visuomotor entrainment to simulated mediolateral translation of the visual field (scene) during treadmill walking. This was demonstrated by significant (p < 0.05) increases in mean step width and variability and center of mass sway. Visuomotor entrainment was demonstrated by high coherence between center of mass sway and visual motion (magnitude square coherence = ~ 0.5 to 0.8). Only PwMS exhibited significantly greater instability (higher step width variability and center of mass sway) when objects moved within the scene (i.e., swaying trees). CONCLUSION: Results suggest the presence of visual motion processing errors in PwMS that reduced dynamic stability. Specifically, object motion (via tree sway) was not effectively parsed from the observer's self-motion. Identifying this distinction between visual object motion and self-motion detection in MS provides insight regarding stability control in environments with excessive external movement, such as those encountered in daily life.


Subject(s)
Multiple Sclerosis , Adult , Aged , Exercise Test/methods , Gait , Humans , Middle Aged , Physical Therapy Modalities , Postural Balance , Walking
6.
J Neurosci Methods ; 369: 109477, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34998799

ABSTRACT

BACKGROUND: Meaningful integration of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) requires knowing whether these measurements reflect the activity of the same neural sources, i.e., estimating the degree of coupling and decoupling between the neuroimaging modalities. NEW METHOD: This paper proposes a method to quantify the coupling and decoupling of fMRI and EEG signals based on the mixing matrix produced by joint independent component analysis (jICA). The method is termed fMRI/EEG-jICA. RESULTS: fMRI and EEG acquired during a syllable detection task with variable syllable presentation rates (0.25-3 Hz) were separated with jICA into two spatiotemporally distinct components, a primary component that increased nonlinearly in amplitude with syllable presentation rate, putatively reflecting an obligatory auditory response, and a secondary component that declined nonlinearly with syllable presentation rate, putatively reflecting an auditory attention orienting response. The two EEG subcomponents were of similar amplitude, but the secondary fMRI subcomponent was ten folds smaller than the primary one. COMPARISON TO EXISTING METHOD: FMRI multiple regression analysis yielded a map more consistent with the primary than secondary fMRI subcomponent of jICA, as determined by a greater area under the curve (0.5 versus 0.38) in a sensitivity and specificity analysis of spatial overlap. CONCLUSION: fMRI/EEG-jICA revealed spatiotemporally distinct brain networks with greater sensitivity than fMRI multiple regression analysis, demonstrating how this method can be used for leveraging EEG signals to inform the detection and functional characterization of fMRI signals. fMRI/EEG-jICA may be useful for studying neurovascular coupling at a macro-level, e.g., in neurovascular disorders.


Subject(s)
Magnetic Resonance Imaging , Neurovascular Coupling , Brain/diagnostic imaging , Brain Mapping/methods , Electroencephalography/methods , Magnetic Resonance Imaging/methods
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6326-6329, 2021 11.
Article in English | MEDLINE | ID: mdl-34892560

ABSTRACT

Continuous myoelectric prediction of intended limb dynamics has the ability to provide transparent control of a prosthesis by the user. However, the impact on these models of adding a human user into the control loop is less clear. Here, the ability of a User Response Model (URM) to continuously predict EMG activity from gait kinematics and kinetics collected during three mobility tasks (level-ground walking, stair ascent, and stair descent) was examined. Multiple-input, multiple-output NARX-based URMs were developed with two outputs (ankle plantarflexor and dorsiflexor) and variable inputs (ankle kinetics, and shank and/or ankle kinematics). Accuracy in predicting the tibialis anterior and medial gastrocnemius EMG was comparable across URMs regardless of the number of inputs. Stair descent had the lowest accuracy among the mobility tasks. No significant differences in normalized root-mean-square error and cross-correlation were found between URMs with five and nine inputs. A URM that continuously predicts EMG activity from gait kinetics and kinematics could be used to simulate human-in-the-loop myoelectric control of a transtibial prosthesis and examine the stability of the system to changes in the environment or due to control errors.


Subject(s)
Artificial Limbs , Gait , Biomechanical Phenomena , Humans , Kinetics , Walking
8.
Front Neurosci ; 15: 709422, 2021.
Article in English | MEDLINE | ID: mdl-34483828

ABSTRACT

A hallmark of human locomotion is that it continuously adapts to changes in the environment and predictively adjusts to changes in the terrain, both of which are major challenges to lower limb amputees due to the limitations in prostheses and control algorithms. Here, the ability of a single-network nonlinear autoregressive model to continuously predict future ankle kinematics and kinetics simultaneously across ambulation conditions using lower limb surface electromyography (EMG) signals was examined. Ankle plantarflexor and dorsiflexor EMG from ten healthy young adults were mapped to normal ranges of ankle angle and ankle moment during level overground walking, stair ascent, and stair descent, including transitions between terrains (i.e., transitions to/from staircase). Prediction performance was characterized as a function of the time between current EMG/angle/moment inputs and future angle/moment model predictions (prediction interval), the number of past EMG/angle/moment input values over time (sampling window), and the number of units in the network hidden layer that minimized error between experimentally measured values (targets) and model predictions of ankle angle and moment. Ankle angle and moment predictions were robust across ambulation conditions with root mean squared errors less than 1° and 0.04 Nm/kg, respectively, and cross-correlations (R2) greater than 0.99 for prediction intervals of 58 ms. Model predictions at critical points of trip-related fall risk fell within the variability of the ankle angle and moment targets (Benjamini-Hochberg adjusted p > 0.065). EMG contribution to ankle angle and moment predictions occurred consistently across ambulation conditions and model outputs. EMG signals had the greatest impact on noncyclic regions of gait such as double limb support, transitions between terrains, and around plantarflexion and moment peaks. The use of natural muscle activation patterns to continuously predict variations in normal gait and the model's predictive capabilities to counteract electromechanical inherent delays suggest that this approach could provide robust and intuitive user-driven real-time control of a wide variety of lower limb robotic devices, including active powered ankle-foot prostheses.

9.
Gait Posture ; 90: 92-98, 2021 10.
Article in English | MEDLINE | ID: mdl-34419916

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is associated with an increased risk of falls, degeneration of sensory organization, and possible increased reliance on vision for balance control. RESEARCH QUESTION: The aim of this study was to assess differences in standing postural control between people with MS and age and sex matched controls during medial-lateral (ML) oscillations of the visual field, with and without blinders to the lower periphery. METHODS: Ten persons with MS (mean age 54.0 ± 5.3 years) and ten age and sex matched controls (mean age: 56.3 ± 6.0 years) participated in this study. Balance control was assessed while participants stood in a Christie Cave system while wearing stereoscopic glasses that projected an immersive forest scene. Visual conditions consisted of 2 m ML visual oscillations of the scene at five frequencies (0.0, 0.3, 0.6, 0.7 and 0.8 Hz) with and without blinders to block the lower periphery. RESULTS AND SIGNIFICANCE: The results demonstrated that, in comparison to controls, participants with MS had a significantly larger center of pressure sway in both the ML and AP direction to ML visual oscillations. Additionally, participants with MS and controls both increased center of pressure frequency content to the visual oscillation frequency, while participants with MS also increased relative power at the visual oscillation frequency in the AP direction. Blinders of lower periphery reduced the percent power at the visual oscillation frequency in both groups and reduced overall sway in participants with MS during visual oscillations. Overall, results indicate that postural balance is sensitive to visual feedback in people with MS. The elicited AP sway to ML visual oscillation could reflect errors in visual processing for the control of balance, and decreased sway in response to blocking vision of the lower peripheral field could indicate an increased reliance on visual cues to maintain balance.


Subject(s)
Multiple Sclerosis , Accidental Falls/prevention & control , Feedback, Sensory , Humans , Middle Aged , Postural Balance , Visual Fields
10.
Pediatr Neurol ; 122: 68-75, 2021 09.
Article in English | MEDLINE | ID: mdl-34301451

ABSTRACT

BACKGROUND: Changes in cerebral blood flow in response to neuronal activation can be measured by time-dependent fluctuations in hemoglobin species within the brain; this is the basis of functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS). There is a clinical need for portable neural imaging systems, such as fNIRS, to accommodate patients who are unable to tolerate an MR environment. OBJECTIVE: Our objective was to compare task-related full-head fNIRS and fMRI signals across cortical regions. METHODS: Eighteen healthy adults completed a same-day fNIRS-fMRI study, in which they performed right- and left-hand finger tapping tasks and a semantic-decision tones-decision task. First- and second-level general linear models were applied to both datasets. RESULTS: The finger tapping task showed that significant fNIRS channel activity over the contralateral primary motor cortex corresponded to surface fMRI activity. Similarly, significant fNIRS channel activity over the bilateral temporal lobe corresponded to the same primary auditory regions as surface fMRI during the semantic-decision tones-decision task. Additional channels were significant for this task that did not correspond to surface fMRI activity. CONCLUSION: Although both imaging modalities showed left-lateralized activation for language processing, the current fNIRS analysis did not show concordant or expected localization at the level necessary for clinical use in individual pediatric epileptic patients. Future work is needed to show whether fNIRS and fMRI are comparable at the source level so that fNIRS can be used in a clinical setting on individual patients. If comparable, such an imaging approach could be applied to children with neurological disorders.


Subject(s)
Brain Mapping/standards , Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging/standards , Spectroscopy, Near-Infrared/standards , Adult , Congresses as Topic , Female , Humans , Male , Middle Aged , Neurology/methods , Neurology/standards , Pediatrics/methods , Pediatrics/standards , Young Adult
11.
Exp Brain Res ; 239(8): 2445-2459, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34106298

ABSTRACT

We examined how implicit and explicit memories contribute to sensorimotor adaptation of movement extent during goal-directed reaching. Twenty subjects grasped the handle of a horizontal planar robot that rendered spring-like resistance to movement. Subjects made rapid "out-and-back" reaches to capture a remembered visual target at the point of maximal reach extent. The robot's resistance changed unpredictably between reaches, inducing target capture errors that subjects attempted to correct from one trial to the next. Each subject performed over 400 goal-directed reaching trials. Some trials were performed without concurrent visual cursor feedback of hand motion. Some trials required self-assessment of performance between trials, whereby subjects reported peak reach extent on the most recent trial. This was done by either moving a cursor on a horizontal display (visual self-assessment), or by moving the robot's handle back to the recalled location (proprioceptive self-assessment). Control condition trials performed either without or with concurrent visual cursor feedback of hand motion did not require self-assessments. We used step-wise linear regression analyses to quantify the extent to which prior reach errors and explicit memories of reach extent contribute to subsequent reach performance. Consistent with prior reports, providing concurrent visual feedback of hand motion increased reach accuracy and reduced the impact of past performance errors on future performance, relative to the corresponding no-vision control condition. By contrast, we found no impact of interposed self-assessment on subsequent reach performance or on how prior target capture errors influence subsequent reach performance. Self-assessments were biased toward the remembered target location and they spanned a compressed range of values relative to actual reach extents, demonstrating that declarative memories of reach performance systematically differed from actual performances. We found that multilinear regression could best account for observed data variability when the regression model included only implicit memories of prior reach performance; including explicit memories (self-assessments) in the model did not improve its predictive accuracy. We conclude therefore that explicit memories of prior reach performance do not contribute to implicit sensorimotor adaptation of movement extent during goal-directed reaching under conditions of environmental uncertainty.


Subject(s)
Goals , Psychomotor Performance , Adaptation, Physiological , Feedback, Sensory , Hand , Humans , Movement
12.
Brain Behav ; 11(5): e02097, 2021 05.
Article in English | MEDLINE | ID: mdl-33759382

ABSTRACT

INTRODUCTION: The purpose of this study was to characterize resting-state cortical networks in chronic stroke survivors using electroencephalography (EEG). METHODS: Electroencephalography data were collected from 14 chronic stroke and 11 neurologically intact participants while they were in a relaxed, resting state. EEG power was normalized to reduce bias and used as an indicator of network activity. Correlations of orthogonalized EEG activity were used as a measure of functional connectivity between cortical regions. RESULTS: We found reduced cortical activity and connectivity in the alpha (p < .05; p = .05) and beta (p < .05; p = .03) bands after stroke while connectivity in the gamma (p = .031) band increased. Asymmetries, driven by a reduction in the lesioned hemisphere, were also noted in cortical activity (p = .001) after stroke. CONCLUSION: These findings suggest that stroke lesions cause a network alteration to more local (higher frequency), asymmetric networks. Understanding changes in cortical networks after stroke could be combined with controllability models to identify (and target) alternate brain network states that reduce functional impairment.


Subject(s)
Electroencephalography , Stroke , Brain , Brain Mapping , Humans
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3162-3165, 2020 07.
Article in English | MEDLINE | ID: mdl-33018676

ABSTRACT

Immersive virtual reality provides a safe and costeffective approach to administrating balance disruption during ambulation. Previous research has explored the effects of applying continuous perturbations in a virtual environment to challenge balance. This pilot study investigates the ability to disrupt balance with discrete visual perturbations during ambulation in healthy young adults. During the study participants walked on a treadmill within a virtual environment. As they walked the entire visual scene was intermittently shifted to the left or right 1 meter over 1 second. The results demonstrate a significant decrease in step length (p <; 0.05) and change in center of mass excursion (p <; 0.05) across participants (N=13). Changes in gait lasted up to three steps after application, suggesting a consistent challenge to dynamic balance control as a result of the discrete visual perturbation . Further, participants did not demonstrate a reduction in response to the discrete visual perturbation with repeated exposure. The results indicate that discrete visual perturbations of a virtual scene can be used to challenge gait and modulate center of mass sway. The use of visual perturbations within a virtual environment to challenge dynamic balance could provide a safer and more affordable avenue for balance rehabilitation by reducing the need for systems that physically perturb balance.


Subject(s)
Gait , Virtual Reality , Exercise Test , Humans , Pilot Projects , Walking , Young Adult
14.
Front Neurosci ; 14: 724, 2020.
Article in English | MEDLINE | ID: mdl-32742257

ABSTRACT

Similar to functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS) detects the changes of hemoglobin species inside the brain, but via differences in optical absorption. Within the near-infrared spectrum, light can penetrate biological tissues and be absorbed by chromophores, such as oxyhemoglobin and deoxyhemoglobin. What makes fNIRS more advantageous is its portability and potential for long-term monitoring. This paper reviews the basic mechanisms of fNIRS and its current clinical applications, the limitations toward more widespread clinical usage of fNIRS, and current efforts to improve the temporal and spatial resolution of fNIRS toward robust clinical usage within subjects. Oligochannel fNIRS is adequate for estimating global cerebral function and it has become an important tool in the critical care setting for evaluating cerebral oxygenation and autoregulation in patients with stroke and traumatic brain injury. When it comes to a more sophisticated utilization, spatial and temporal resolution becomes critical. Multichannel NIRS has improved the spatial resolution of fNIRS for brain mapping in certain task modalities, such as language mapping. However, averaging and group analysis are currently required, limiting its clinical use for monitoring and real-time event detection in individual subjects. Advances in signal processing have moved fNIRS toward individual clinical use for detecting certain types of seizures, assessing autonomic function and cortical spreading depression. However, its lack of accuracy and precision has been the major obstacle toward more sophisticated clinical use of fNIRS. The use of high-density whole head optode arrays, precise sensor locations relative to the head, anatomical co-registration, short-distance channels, and multi-dimensional signal processing can be combined to improve the sensitivity of fNIRS and increase its use as a wide-spread clinical tool for the robust assessment of brain function.

15.
J Neurophysiol ; 122(5): 2156-2172, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31553682

ABSTRACT

Whereas numerous motor control theories describe the control of arm trajectory during reach, the control of stabilization in a constant arm position (i.e., visuomotor control of arm posture) is less clear. Three potential mechanisms have been proposed for visuomotor control of arm posture: 1) increased impedance of the arm through co-contraction of antagonistic muscles, 2) corrective muscle activity via spinal/supraspinal reflex circuits, and/or 3) intermittent voluntary corrections to errors in position. We examined the cortical mechanisms of visuomotor control of arm posture and tested the hypothesis that cortical error networks contribute to arm stabilization. We collected electroencephalography (EEG) data from 10 young healthy participants across four experimental planar movement tasks. We examined brain activity associated with intermittent voluntary corrections of position error and antagonist co-contraction during stabilization. EEG beta-band (13-26 Hz) power fluctuations were used as indicators of brain activity, and coherence between EEG electrodes was used as a measure of functional connectivity between brain regions. Cortical activity in the sensory, motor, and visual areas during arm stabilization was similar to activity during volitional arm movements and was larger than activity during co-contraction of the arm. However, cortical connectivity between the sensorimotor and visual regions was higher during arm stabilization compared with volitional arm movements and co-contraction of the arm. The difference in cortical activity and connectivity between tasks might be attributed to an underlying visuomotor error network used to update motor commands for visuomotor control of arm posture.NEW & NOTEWORTHY We examined cortical activity and connectivity during control of stabilization in a constant arm position (i.e., visuomotor control of arm posture). Our findings provide evidence for cortical involvement during control of stabilization in a constant arm position. A visuomotor error network appears to be active and may update motor commands for visuomotor control of arm posture.


Subject(s)
Arm/physiology , Psychomotor Performance , Sensorimotor Cortex/physiology , Adult , Beta Rhythm , Female , Humans , Male , Muscle Contraction , Muscle, Skeletal/physiology
16.
Exp Brain Res ; 237(10): 2665-2673, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31396645

ABSTRACT

Detection of 3D object-motion trajectories depends on the integration of two distinct visual cues: translational displacement and looming. Electrophysiological studies have identified distinct neuronal populations, whose activity depends on the precise motion cues present in the stimulus. This distinction, however, has been less clear in humans, and it is confounded by differences in the behavioral task being performed. We analyzed whole-brain fMRI, while subjects performed a common time-to-arrival task for objects moving along three trajectories: moving directly towards the observer (collision course), with trajectories parallel to the line of sight (passage course), and with trajectories perpendicular to the line of sight (gap closure). We found that there was substantial overlap in the pattern of activation associated with each of the three tasks, with differences among conditions limited to the human motion area (hMT+), which showed greater activation extent in the gap closure condition than for either collision or passage courses. These results support a common substrate for temporal judgments of an object's time-to-arrival, wherein the special cases of object motion directly toward, or perpendicular to, the observer represent two extremes within the broader continuum of 3D passage trajectories relative to the observer.


Subject(s)
Cues , Motion Perception/physiology , Task Performance and Analysis , Visual Cortex/physiology , Female , Humans , Judgment/physiology , Male , Motion , Photic Stimulation/methods
17.
Front Neurosci ; 12: 13, 2018.
Article in English | MEDLINE | ID: mdl-29410611

ABSTRACT

Joint independent component analysis (jICA) can be applied within subject for fusion of multi-channel event-related potentials (ERP) and functional magnetic resonance imaging (fMRI), to measure brain function at high spatiotemporal resolution (Mangalathu-Arumana et al., 2012). However, the impact of experimental design choices on jICA performance has not been systematically studied. Here, the sensitivity of jICA for recovering neural sources in individual data was evaluated as a function of imaging SNR, number of independent representations of the ERP/fMRI data, relationship between instantiations of the joint ERP/fMRI activity (linear, non-linear, uncoupled), and type of sources (varying parametrically and non-parametrically across representations of the data), using computer simulations. Neural sources were simulated with spatiotemporal and noise attributes derived from experimental data. The best performance, maximizing both cross-modal data fusion and the separation of brain sources, occurred with a moderate number of representations of the ERP/fMRI data (10-30), as in a mixed block/event related experimental design. Importantly, the type of relationship between instantiations of the ERP/fMRI activity, whether linear, non-linear or uncoupled, did not in itself impact jICA performance, and was accurately recovered in the common profiles (i.e., mixing coefficients). Thus, jICA provides an unbiased way to characterize the relationship between ERP and fMRI activity across brain regions, in individual data, rendering it potentially useful for characterizing pathological conditions in which neurovascular coupling is adversely affected.

18.
J Neuroeng Rehabil ; 11: 170, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25526770

ABSTRACT

BACKGROUND: Intention tremor and dysmetria are leading causes of upper extremity disability in Multiple Sclerosis (MS). The development of effective therapies to reduce tremor and dysmetria is hampered by insufficient understanding of how the distributed, multi-focal lesions associated with MS impact sensorimotor control in the brain. Here we describe a systems-level approach to characterizing sensorimotor control and use this approach to examine how sensory and motor processes are differentially impacted by MS. METHODS: Eight subjects with MS and eight age- and gender-matched healthy control subjects performed visually-guided flexion/extension tasks about the elbow to characterize a sensory feedback control model that includes three sensory feedback pathways (one for vision, another for proprioception and a third providing an internal prediction of the sensory consequences of action). The model allows us to characterize impairments in sensory feedback control that contributed to each MS subject's tremor. RESULTS: Models derived from MS subject performance differed from those obtained for control subjects in two ways. First, subjects with MS exhibited markedly increased visual feedback delays, which were uncompensated by internal adaptive mechanisms; stabilization performance in individuals with the longest delays differed most from control subject performance. Second, subjects with MS exhibited misestimates of arm dynamics in a way that was correlated with tremor power. Subject-specific models accurately predicted kinematic performance in a reach and hold task for neurologically-intact control subjects while simulated performance of MS patients had shorter movement intervals and larger endpoint errors than actual subject responses. This difference between simulated and actual performance is consistent with a strategic compensatory trade-off of movement speed for endpoint accuracy. CONCLUSIONS: Our results suggest that tremor and dysmetria may be caused by limitations in the brain's ability to adapt sensory feedback mechanisms to compensate for increases in visual information processing time, as well as by errors in compensatory adaptations of internal estimates of arm dynamics.


Subject(s)
Brain/physiopathology , Feedback, Sensory/physiology , Multiple Sclerosis/physiopathology , Proprioception/physiology , Tremor/physiopathology , Adult , Aged , Female , Humans , Male , Middle Aged , Models, Biological , Movement/physiology , Multiple Sclerosis/complications , Pilot Projects , Tremor/etiology , Young Adult
19.
J Neural Eng ; 11(5): 056027, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25246110

ABSTRACT

OBJECTIVE: Powered robotic prostheses create a need for natural-feeling user interfaces and robust control schemes. Here, we examined the ability of a nonlinear autoregressive model to continuously map the kinematics of a transtibial prosthesis and electromyographic (EMG) activity recorded within socket to the future estimates of the prosthetic ankle angle in three transtibial amputees. APPROACH: Model performance was examined across subjects during level treadmill ambulation as a function of the size of the EMG sampling window and the temporal 'prediction' interval between the EMG/kinematic input and the model's estimate of future ankle angle to characterize the trade-off between model error, sampling window and prediction interval. MAIN RESULT: Across subjects, deviations in the estimated ankle angle from the actual movement were robust to variations in the EMG sampling window and increased systematically with prediction interval. For prediction intervals up to 150 ms, the average error in the model estimate of ankle angle across the gait cycle was less than 6°. EMG contributions to the model prediction varied across subjects but were consistently localized to the transitions to/from single to double limb support and captured variations from the typical ankle kinematics during level walking. SIGNIFICANCE: The use of an autoregressive modeling approach to continuously predict joint kinematics using natural residual muscle activity provides opportunities for direct (transparent) control of a prosthetic joint by the user. The model's predictive capability could prove particularly useful for overcoming delays in signal processing and actuation of the prosthesis, providing a more biomimetic ankle response.


Subject(s)
Amputation Stumps/physiopathology , Ankle Joint/physiopathology , Artificial Limbs , Electromyography/methods , Models, Statistical , Muscle, Skeletal/physiopathology , Robotics/instrumentation , Amputees/rehabilitation , Computer Simulation , Feedback, Physiological , Humans , Man-Machine Systems , Muscle Contraction , Reproducibility of Results , Robotics/methods , Sensitivity and Specificity
20.
Article in English | MEDLINE | ID: mdl-25570760

ABSTRACT

Motor control deficits during aging have been well-documented. Various causes of neuromotor decline, including both peripheral and central neurological deficits, have been hypothesized. Here, we use a model of closed-loop sensorimotor control to examine the functional causes of motor control deficits during aging. We recruited 14 subjects aged 19-61 years old to participate in a study in which they performed single-joint compensatory and pursuit tracking tasks with their dominant hand. We found that visual response delay and visual noise increased with age, while reliance on visual feedback, especially during compensatory tracking decreased. Increases in visual noise were also positively correlated with increases in movement error during a reach and hold task. The results suggest an increase in noise within the visuomotor control system may contribute to the decline in motor performance during early aging.


Subject(s)
Aging/physiology , Movement/physiology , Psychomotor Performance/physiology , Sensorimotor Cortex/physiology , Adult , Elbow/physiology , Feedback, Sensory , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...