Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Biomech ; 34(4): 327-335, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29613821

ABSTRACT

Previous studies utilizing jump-landing biomechanics to predict anterior cruciate ligament injuries have shown inconsistent findings. The purpose of this study was to quantify the differences and correlations in jump-landing kinematics between a drop-jump, a controlled volleyball-takeoff, and a simulated-game volleyball-takeoff. Seventeen female volleyball players performed these 3 tasks on a volleyball court, while 3-dimensional kinematic data were collected by 3 calibrated camcorders. Participants demonstrated significantly increased jump height, shorter stance time, increased time differences in initial contact between 2 feet, increased knee and hip flexion at initial contact and decreased peak knee and hip flexion for both left and right legs, and decreased knee-ankle distance ratio at the lowest height of midhip for the 2 volleyball-takeoffs compared with the drop-jump (P < .05, Cohen's dz ≥ 0.8). Significant correlations were observed for all variables between the 2 volleyball-takeoffs (P < .05, ρ ≥ .6) but were not observed for most variables between the drop-jump and 2 volleyball-takeoffs. Controlled drop-jump kinematics may not represent jump-landing kinematics exhibited during volleyball competition. Jump-landing mechanics during sports-specific tasks may better represent those exhibited during sports competition and their associated risk of anterior cruciate ligament injury compared with the drop-jump.


Subject(s)
Anterior Cruciate Ligament Injuries/prevention & control , Anterior Cruciate Ligament Injuries/physiopathology , Lower Extremity/physiology , Volleyball , Adolescent , Ankle Joint/physiology , Biomechanical Phenomena , Female , Humans , Sports , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...