Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Surg Res ; 295: 28-40, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37979234

ABSTRACT

INTRODUCTION: Graft loss in vascularized composite allotransplantation (VCA) is more often associated with vasculopathy and chronic rejection (CR) than acute cellular rejection (ACR). We present a rat osteomyocutaneous flap model using titrated tacrolimus administration that mimics the graft rejection patterns in our clinical hand transplant program. Comparison of outcomes in these models support a role for ischemia reperfusion injury (IRI) and microvascular changes in CR of skin and large-vessel vasculopathy. The potential of the surgical models for investigating mechanisms of rejection and vasculopathy in VCA and treatment interventions is presented. MATERIALS AND METHODS: Four rodent groups were evaluated: syngeneic controls (Group 1), allogeneic transient immunosuppression (Group 2), allogeneic suboptimal immunosuppression (Group 3), and allogeneic standard immunosuppression (Group 4). Animals were monitored for ACR, vasculopathy, and CR of the skin. RESULTS: Transient immunosuppression resulted in severe ACR within 2 wk of tacrolimus discontinuation. Standard immunosuppression resulted in minimal rejection but subclinical microvascular changes, including capillary thrombosis and luminal narrowing in arterioles in the donor skin. Further reduction in tacrolimus dose led to femoral vasculopathy and CR of the skin. Surprisingly, femoral vasculopathy was also observed in the syngeneic control group. CONCLUSIONS: Titration of tacrolimus in the allogeneic VCA model resulted in presentations of rejection and vasculopathy similar to those in patients and suggests vasculopathy starts at the microvascular level. This adjustable experimental model will allow the study of variables and interventions, such as external trauma or complement blockade, that may initiate or mitigate vasculopathy and CR in VCA.


Subject(s)
Tacrolimus , Vascularized Composite Allotransplantation , Humans , Rats , Animals , Vascularized Composite Allotransplantation/adverse effects , Vascularized Composite Allotransplantation/methods , Surgical Flaps , Immunosuppression Therapy , Immune Tolerance , Graft Rejection/diagnosis , Graft Rejection/etiology , Graft Survival
2.
Antioxid Redox Signal ; 38(4-6): 261-281, 2023 02.
Article in English | MEDLINE | ID: mdl-35950616

ABSTRACT

Aims: The objective of this study is to identify mechanisms for adipose stromal vascular fraction's (SVF) restorative effects on vasodilation in aging-induced coronary microvascular disease (CMD). We hypothesize that reactive oxygen species (ROS) diminish ß1-adrenergic receptor (ß1ADR)- and flow-mediated dilation (FMD) in coronary arterioles, reversible by SVF and adipose-derived stem cells (ADSCs). Results: SVF attenuates aging-induced chronic accumulation of ROS and pro-oxidant gene and protein expression with enhancement of antioxidant gene and protein expression and glutathione, but not nitric oxide. ADSCs attenuate hydrogen peroxide while restoring nitric oxide and glutathione. Mass spectrometry of SVF- and ADSC-conditioned media reveals abundant antioxidant proteins suggesting a paracrine mechanism. FMD and ß1ADR-mediated dilation diminished with aging, restored with SVF and ADSCs. FMD was restored by a switch in the acute signaling mediator from hydrogen peroxide in aging to peroxynitrite with SVF and ADSCs. Vasorelaxation to ß1ADR-agonism was mechanistically linked with hydrogen peroxide, nitric oxide, and glutathione. Exogenous ROS eliminates isoproterenol-mediated dilation in youth that is blocked by inhibition of pro-desensitization and internalization proteins while nitric oxide enhances isoproterenol-mediated dilation in aging. Innovation: We introduce a novel mechanism by which ROS impacts ß1ADR trafficking: the ROS/RNS-ß1ADR desensitization and internalization axis. Aging-induced ROS shunts ß1ADR from the plasma membrane into endosomes. SVF reduces oxidative burden, restoring functional ß1ADR. Conclusions: SVF (and ADSCs to a lesser extent) reduce oxidative stress, and restore flow- and ß1ADR-mediated vasodilation in aging. SVF represents a promising therapeutic strategy for CMD by addressing root cause of pathology; that is, oxidative stress-mediated hyperconstriction. Antioxid. Redox Signal. 38, 261-281.


Subject(s)
Stromal Vascular Fraction , Vasodilation , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Isoproterenol/metabolism , Isoproterenol/pharmacology , Oxidative Stress , Oxidation-Reduction , Glutathione/metabolism , Adipose Tissue/metabolism
3.
J Vasc Res ; 59(6): 343-357, 2022.
Article in English | MEDLINE | ID: mdl-36075199

ABSTRACT

Adipose-derived stromal vascular fraction (SVF) has emerged as a potential regenerative therapy, but few studies utilize SVF in a setting of advanced age. Additionally, the specific cell population in SVF providing therapeutic benefit is unknown. We hypothesized that aging would alter the composition of cell populations present in SVF and its ability to promote angiogenesis following injury, a mechanism that is T cell-mediated. SVF isolated from young and old Fischer 344 rats was examined with flow cytometry for cell composition. Mesenteric windows from old rats were isolated following exteriorization-induced (EI) hypoxic injury and intravenous injection of one of four cell therapies: (1) SVF from young or (2) old donors, (3) SVF from old donors depleted of or (4) enriched for T cells. Advancing age increased the SVF T-cell population but reduced revascularization following injury. Both young and aged SVF incorporated throughout the host mesenteric microvessels, but only young SVF significantly increased vascular area following EI. This study highlights the effect of donor age on SVF angiogenic efficacy and demonstrates how the ex vivo mesenteric-window model can be used in conjunction with SVF therapy to investigate its contribution to angiogenesis.


Subject(s)
Adipose Tissue , Stromal Cells , Rats , Animals , Stromal Vascular Fraction , Rats, Inbred F344 , Microvessels
4.
Am J Physiol Heart Circ Physiol ; 323(4): H749-H762, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36018760

ABSTRACT

Aging is associated with blunted coronary microvascular vasodilatory function. Previously, systemically administered adipose stromal vascular fraction (SVF) therapy reversed aging-induced attenuation of ß1-adrenergic- and flow-mediated dilation dependent on reducing mitochondrial reactive oxygen species. We hypothesized that SVF-mediated recovery of microvascular dilatory function is dependent on recovery of mitochondrial function, specifically by reducing mitochondrial hyperfission. Female Fischer-344 rats were allocated into young control, old control, and old + SVF therapy groups. Pressure myography, immunofluorescent staining, Western blot analysis, and RNA sequencing were performed to determine coronary microvascular mitochondrial dynamics and function. Gene and protein expression of fission-mediator DRP-1 was enhanced with aging but reversed by SVF therapy. SVF facilitated an increase in fusion-mediator MFN-1 gene and protein expression. Mitochondrial morphology was characterized as rod-like and densely networked in young controls, isolated circular and punctate with aging, and less circularity with partially restored mitochondrial branch density with SVF therapy. Decreased mitochondrial membrane potential and ATP bioavailability in aged animals at baseline and during flow-mediated dilation were reversed by SVF and accompanied with enhanced oxygen consumption. Dilation to norepinephrine and flow in young controls were dependent on uninhibited mitochondrial fusion, whereas inhibiting fission did not restore aged microvessel response to norepinephrine or flow. SVF-mediated recovery of ß-adrenergic function was dependent on uninhibited mitochondrial fusion, whereas recovery of flow-mediated dilation was dependent on maintained mitochondrial fission. Impaired dilation in aging is mitigated by SVF therapy, which recovers mitochondrial function and fission/fusion balance.NEW & NOTEWORTHY We elucidated the consequences of aging on coronary microvascular mitochondrial health as well as SVF's ability to reverse these effects. Aging shifts gene/protein expression and mitochondrial morphology indicating hyperfission, alongside attenuated mitochondrial membrane potential and ATP bioavailability, all reversed using SVF therapy. Mitochondrial membrane potential and ATP levels correlated with vasodilatory efficiency. Mitochondrial dysfunction is a contributing pathological factor in aging that can be targeted by therapeutic SVF to preserve microvascular dilative function.


Subject(s)
Adipose Tissue , Stromal Cells , Adenosine Triphosphate/metabolism , Adipose Tissue/metabolism , Adrenergic Agents , Animals , Female , Mitochondria , Norepinephrine/metabolism , Rats , Rats, Inbred F344 , Reactive Oxygen Species/metabolism , Stromal Cells/metabolism , Stromal Vascular Fraction
5.
Geroscience ; 44(1): 329-348, 2022 02.
Article in English | MEDLINE | ID: mdl-34608562

ABSTRACT

Our past study showed that coronary arterioles isolated from adipose-derived stromal vascular fraction (SVF)-treated rats showed amelioration of the age-related decrease in vasodilation to beta-adrenergic receptor (ß-AR) agonist and improved ß-AR-dependent coronary flow and microvascular function in a model of advanced age. We hypothesized that intravenously (i.v.) injected SVF improves coronary microvascular function in aged rats by re-establishing the equilibrium of the negative regulators of the internal adrenergic signaling cascade, G-protein receptor kinase 2 (GRK2) and G-alpha inhibitory (Gαi) proteins, back to youthful levels. Female Fischer-344 rats aged young (3 months, n = 24), old (24 months, n = 26), and old animals that received 1 × 107 green fluorescent protein (GFP+) SVF cells (O + SVF, n = 11) 4 weeks prior to sacrifice were utilized. Overnight urine was collected prior to sacrifice for catecholamine measurements. Cardiac samples were used for western blotting while coronary arterioles were isolated for pressure myography studies, immunofluorescence staining, and RNA sequencing. Coronary microvascular levels of the ß1 adrenergic receptor are decreased with advancing age, but this decreased expression was rescued by SVF treatment. Aging led to a decrease in phosphorylated GRK2 in cardiomyocytes vs. young control with restoration of phosphorylation status by SVF. In vessels, there was no change in genetic transcription (RNAseq) or protein expression (immunofluorescence); however, inhibition of GRK2 (paroxetine) led to improved vasodilation to norepinephrine in the old control (OC) and O + SVF, indicating greater GRK2 functional inhibition of ß1-AR in aging. SVF works to improve adrenergic-mediated vasodilation by restoring the ß1-AR population and mitigating signal cascade inhibitors to improve vasodilation.


Subject(s)
Aging , Cell- and Tissue-Based Therapy , Aging/pathology , Animals , Coronary Circulation , Female , G-Protein-Coupled Receptor Kinase 2/physiology , Microcirculation , Rats , Receptors, Adrenergic, beta-1/physiology , Vasodilation
6.
Antioxid Redox Signal ; 35(12): 974-1015, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34314229

ABSTRACT

Significance: The vasculature responds to the respiratory needs of tissue by modulating luminal diameter through smooth muscle constriction or relaxation. Coronary perfusion, diastolic function, and coronary flow reserve are drastically reduced with aging. This loss of blood flow contributes to and exacerbates pathological processes such as angina pectoris, atherosclerosis, and coronary artery and microvascular disease. Recent Advances: Increased attention has recently been given to defining mechanisms behind aging-mediated loss of vascular function and development of therapeutic strategies to restore youthful vascular responsiveness. The ultimate goal aims at providing new avenues for symptom management, reversal of tissue damage, and preventing or delaying of aging-induced vascular damage and dysfunction in the first place. Critical Issues: Our major objective is to describe how aging-associated mitochondrial dysfunction contributes to endothelial and smooth muscle dysfunction via dysregulated reactive oxygen species production, the clinical impact of this phenomenon, and to discuss emerging therapeutic strategies. Pathological changes in regulation of mitochondrial oxidative and nitrosative balance (Section 1) and mitochondrial dynamics of fission/fusion (Section 2) have widespread effects on the mechanisms underlying the ability of the vasculature to relax, leading to hyperconstriction with aging. We will focus on flow-mediated dilation, endothelial hyperpolarizing factors (Sections 3 and 4), and adrenergic receptors (Section 5), as outlined in Figure 1. The clinical implications of these changes on major adverse cardiac events and mortality are described (Section 6). Future Directions: We discuss antioxidative therapeutic strategies currently in development to restore mitochondrial redox homeostasis and subsequently vascular function and evaluate their potential clinical impact (Section 7). Antioxid. Redox Signal. 35, 974-1015.


Subject(s)
Aging/metabolism , Endothelium, Vascular/metabolism , Mitochondria/metabolism , Animals , Humans , Oxidation-Reduction
7.
SAGE Open Med ; 8: 2050312120968721, 2020.
Article in English | MEDLINE | ID: mdl-33194200

ABSTRACT

As clinical experience with surgical techniques and immunosuppression in vascularized composite allotransplantation recipients has accumulated, vascularized composite allotransplantation for hand and face have become standard of care in some countries for select patients who have experienced catastrophic tissue loss. Experience to date suggests that clinical vascularized composite allotransplantation grafts undergo the same processes of allograft rejection as solid organ grafts. Nonetheless, there are some distinct differences, especially with respect to the immunologic influence of the skin and how the graft is affected by environmental and traumatic insults. Understanding the mechanisms around these similarities and differences has the potential to not only improve vascularized composite allotransplantation outcomes but also outcomes for all types of transplants and to contribute to our understanding of how complex systems of immunity and function work together. A distinct disadvantage in the study of upper extremity vascularized composite allotransplantation recipients is the low number of clinical transplants performed each year. As upper extremity transplantation is a quality of life rather than a lifesaving transplant, these numbers are not likely to increase significantly until the risks of systemic immunosuppression can be reduced. As such, experimental models of vascularized composite allotransplantation are essential to test hypotheses regarding unique characteristics of graft rejection and acceptance of vascularized composite allotransplantation allografts. Rat hind limb vascularized composite allotransplantation models have been widely used to address these questions and provide essential proof-of-concept findings which can then be extended to other experimental models, including mice and large animal models, as new concepts are translated to the clinic. Here, we review the large body of rat hind limb vascularized composite allotransplantation models in the literature, with a focus on the various surgical models that have been developed, contrasting the characteristics of the specific model and how they have been applied. We hope that this review will assist other researchers in choosing the most appropriate rat hind limb transplantation model for their scientific interests.

8.
Front Physiol ; 11: 1026, 2020.
Article in English | MEDLINE | ID: mdl-33013445

ABSTRACT

Vascular connectivity between adjacent vessel beds within and between tissue compartments is essential to any successful neovascularization process. To establish new connections, growing neovessels must locate other vascular elements during angiogenesis, often crossing matrix and other tissue-associated boundaries and interfaces. How growing neovessels traverse any tissue interface, whether part of the native tissue structure or secondary to a regenerative procedure (e.g., an implant), is not known. In this study, we developed an experimental model of angiogenesis wherein growing neovessels must interact with a 3D interstitial collagen matrix interface that separates two distinct tissue compartments. Using this model, we determined that matrix interfaces act as a barrier to neovessel growth, deflecting growing neovessels parallel to the interface. Computational modeling of the neovessel/matrix biomechanical interactions at the interface demonstrated that differences in collagen fibril density near and at the interface are the likely mechanism of deflection, while fibril alignment guides deflected neovessels along the interface. Interestingly, stromal cells facilitated neovessel interface crossing during angiogenesis via a vascular endothelial growth factor (VEGF)-A dependent process. However, ubiquitous addition of VEGF-A in the absence of stromal cells did not promote interface invasion. Therefore, our findings demonstrate that vascularization of a tissue via angiogenesis involves stromal cells providing positional cues to the growing neovasculature and provides insight into how a microvasculature is organized within a tissue.

9.
Elife ; 92020 09 09.
Article in English | MEDLINE | ID: mdl-32902379

ABSTRACT

Within the cervical and lumbar spinal enlargements, central pattern generator (CPG) circuitry produces the rhythmic output necessary for limb coordination during locomotion. Long propriospinal neurons that inter-connect these CPGs are thought to secure hindlimb-forelimb coordination, ensuring that diagonal limb pairs move synchronously while the ipsilateral limb pairs move out-of-phase during stepping. Here, we show that silencing long ascending propriospinal neurons (LAPNs) that inter-connect the lumbar and cervical CPGs disrupts left-right limb coupling of each limb pair in the adult rat during overground locomotion on a high-friction surface. These perturbations occurred independent of the locomotor rhythm, intralimb coordination, and speed-dependent (or any other) principal features of locomotion. Strikingly, the functional consequences of silencing LAPNs are highly context-dependent; the phenotype was not expressed during swimming, treadmill stepping, exploratory locomotion, or walking on an uncoated, slick surface. These data reveal surprising flexibility and context-dependence in the control of interlimb coordination during locomotion.


Subject(s)
Central Pattern Generators , Extremities , Interneurons , Proprioception/physiology , Animals , Central Pattern Generators/cytology , Central Pattern Generators/physiology , Commissural Interneurons/cytology , Commissural Interneurons/physiology , Extremities/innervation , Extremities/physiology , Female , Interneurons/cytology , Interneurons/physiology , Rats , Rats, Sprague-Dawley , Spinal Cord/cytology , Spinal Cord/physiology
10.
Cureus ; 12(7): e9196, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32821552

ABSTRACT

Background The gold standard for nerve repair is end-to-end (ETE) repair. Helicoid technique (HT) has also been previously described. In this pilot study, HT was compared to ETE and a modified helicoid weave technique (MHWT). In MHWT, recipient nerve is passed through rather than around the donor nerve, allowing for greater nerve-to-nerve interaction. Methods Eighteen adult male Lewis rats received a 2-cm sciatic nerve transection and were divided into three groups: ETE, HT, and MHWT. Five months later, electromyography (EMG), tetanic force of contraction, and wet weight of the extensor digitorum longus muscle were recorded in both the operated and non-operated sides. Nerve biopsies were taken proximal and distal to the site of the nerve graft for histological examination. Results One rat died following repair surgery and three rats died during the second surgery. The mean threshold of stimulation for ETE, HT, and MHWT were 183.3 µA, 3707.5 µA, and 656.6 µA, respectively. EMG analysis revealed that latency and duration are both affected by surgical repair type and injured or uninjured conditions. Threshold ratio (injured:non-injured) revealed pilot-level significant differences between HT and both MHWT (p = 0.069) and ETE (p = 0.082). Nerve biopsy demonstrated fascicles distally in all three groups. Conclusions While HT and MHWT function as a nerve repair technique, they are not superior to ETE. ETE remains the gold standard for nerve repair. While mean values were in favor of ETE, no statistical significance was attained.

11.
FASEB Bioadv ; 2(5): 304-314, 2020 May.
Article in English | MEDLINE | ID: mdl-32395703

ABSTRACT

BACKGROUND: Ischemia reperfusion (IR) injury leads to activation of dynamin-related protein (Drp-1), causing mitochondrial fission and generation of reactive oxygen species (ROS), but the molecular mechanisms that activate Drp-1 are not known. The purpose of this study was to establish a link between Thbs-1 and fission protein (Drp-1) through Pgc-1α following IR in advancing age. METHODS: Female Fischer-344 rats were divided into four groups: Young Control, Young + IR, Old Control, and Old + IR. Heart function and coronary flow were evaluated at baseline and 72 hours after IR, hearts were explanted and mitochondrial ROS generation was measured using MitoPY1, as well as protein levels of Thbs-1, Pgc-1α, and Drp-1. In vitro, rat aortic endothelial cells (RAEC) were treated with siRNA or plasmid for Pgc-1α to evaluate Pgc-1α effect on Drp-1. RESULTS: Mitochondrial ROS generation in heart tissue increased in both age groups following IR. Old animals exhibited diastolic dysfunction at baseline; after IR they displayed reduced systolic function and exacerbated diastolic dysfunction compared to young controls. IR increased Thbs-1 and Drp-1 expression in young and old hearts compared to control. siRNA to Pgc-1α enhanced levels of Drp-1 in RAECs and increased ROS generation after hypoxia, while Pgc-1α plasmid ameliorates Drp-1 expression in the presence of exogenous Thbs-1. CONCLUSION: These results highlight a novel signaling pathway by which Thbs-1 regulates mitochondrial fission protein (Drp-1) and ROS generation during hypoxia, and presumably, following IR. Inhibiting Thbs-1 immediately after IR may prevent Drp-1-mediated mitochondrial fission and is likely to improve the diastolic function of the heart by reducing ROS-mediated cardiomyocyte damage in the aged population.

12.
Immunol Cell Biol ; 98(8): 650-666, 2020 09.
Article in English | MEDLINE | ID: mdl-32392367

ABSTRACT

The metabolically dynamic nature of healthy adipose places this tissue under regular inflammatory stress. A network of adipose-resident anti-inflammatory immune cells modulates and resolves this endogenous inflammation. Previous work in our laboratory identified a CD11b+ Gr1+ subset of these immunosuppressive adipose stromal cells in healthy mice. Myeloid-derived suppressor cells (MDSCs), typically associated with cancer and chronic inflammation, have a similar surface marker phenotype and accumulate in adipose of high-fat diet-fed mice. Given the routine inflammatory stresses on healthy adipose and the suppressive nature of the tissue-resident immune cells, we hypothesized that these CD11b+ Gr1+ cells were a genuine population of MDSCs involved in regulating tissue homeostasis. Flow cytometric analysis of these cells found that they were CD11b+ CD301- Ly6C+ Ly6G+/- and did not express traditional macrophage markers. Moreover, in vitro functional assays demonstrated that these cells suppressed αCD3/αCD28-induced T-cell proliferation, solidifying their identity as bona fide adipose-resident MDSCs. Systemic MDSC depletion altered adipose immune cell dynamics in otherwise healthy mice, increasing the number of CD4+ effector memory T cells and modifying the surface markers expressed by adipose-resident macrophages. In addition, transcription of various immunomodulatory cytokines was clearly dysregulated in the adipose of MDSC-depleted animals compared with controls. Altogether, our findings indicate that there is a population of bona fide MDSCs in the adipose of otherwise healthy mice that actively contribute to the health and immune homeostasis of this tissue.


Subject(s)
Adipose Tissue/immunology , Homeostasis/immunology , Myeloid-Derived Suppressor Cells , Animals , CD11b Antigen , Cytokines , Lymphocyte Activation , Macrophages , Mice , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/immunology , T-Lymphocytes
13.
Aging (Albany NY) ; 11(13): 4561-4578, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31296794

ABSTRACT

Our past study showed that a single tail vein injection of adipose-derived stromal vascular fraction (SVF) into old rats was associated with improved dobutamine-mediated coronary flow reserve. We hypothesize that i.v. injection of SVF improves coronary microvascular function in aged rats via alterations in beta adrenergic microvascular signaling. Female Fischer-344 rats aged young (3 months, n=32) and old (24 months, n=30) were utilized, along with two cell therapies intravenously injected in old rats four weeks prior to sacrifice: 1x107 green fluorescent protein (GFP+) SVF cells (O+SVF, n=21), and 5x106 GFP+ bone-marrow mesenchymal stromal cells (O+BM, n=6), both harvested from young donors. Cardiac ultrasound and pressure-volume measurements were obtained, and coronary arterioles were isolated from each group for microvessel reactivity studies and immunofluorescence staining. Coronary flow reserve decreased with advancing age, but this effect was rescued by the SVF treatment in the O+SVF group. Echocardiography showed an age-related diastolic dysfunction that was improved with SVF to a greater extent than with BM treatment. Coronary arterioles isolated from SVF-treated rats showed amelioration of the age-related decrease in vasodilation to a non-selective ß-AR agonist. I.v. injected SVF cells improved ß-adrenergic receptor-dependent coronary flow and microvascular function in a model of advanced age.


Subject(s)
Adipose Tissue/cytology , Age Factors , Arterioles/cytology , Receptors, Adrenergic, beta-1/metabolism , Stromal Cells/cytology , Animals , Female , Fractional Flow Reserve, Myocardial , Green Fluorescent Proteins , Injections, Intravenous , Luminescent Agents , Mesenchymal Stem Cells/cytology , Rats , Rats, Inbred F344 , Signal Transduction , Vasodilation
14.
J Vis Exp ; (148)2019 06 28.
Article in English | MEDLINE | ID: mdl-31305512

ABSTRACT

Coronary artery disease is the leading cause of death worldwide. After an acute myocardial infarction, early and successful myocardial intervention via recanalization of the coronary artery is the most effective strategy for reducing the size of ischemic myocardium. The coronary microvasculature cannot be visualized and imaged in vivo, but there are several invasive and noninvasive techniques that can be used to assess parameters which depend directly on coronary microvascular function. The endothelial function after ischemia reperfusion can be assessed also at the level of the coronary circulation via the coronary flow reserve (CFR). In this study, peak velocity of left anterior descending (LAD) coronary arteries was measured in rats in vivo via Transthoracic Doppler Echocardiography during resting and stress challenge (induced by Dobutamine). A normal heart can increase its coronary blood flow up to four times above the resting values during stress induction. Following ischemia reperfusion, we found a significantly diminished CFR, which can be used as a marker of coronary microvascular dysfunction. CFR has opened a window on the importance of microvascular dysfunction and has been shown to predict cardiovascular risk independent of whether the severe obstructive disease is present.


Subject(s)
Myocardial Ischemia/physiopathology , Myocardial Reperfusion , Animals , Coronary Artery Disease/physiopathology , Coronary Circulation , Coronary Vessels , Echocardiography, Doppler/methods , Female , Myocardial Infarction/physiopathology , Rats
15.
J Vis Exp ; (146)2019 04 26.
Article in English | MEDLINE | ID: mdl-31081823

ABSTRACT

Vascularized composite allotransplantation (VCA) is a relatively new field in the reconstructive surgery. Clinical achievements in human VCA include hand and face transplants and, more recently, abdominal wall, uterus, and urogenital transplants. Functional outcomes have exceeded initial expectations, and most recipients enjoy an improved quality of life. However, as clinical experience accumulates, chronic rejection and complications from the immunosuppression must be addressed. In many cases where grafts have failed, the causative pathology has been ischemic vasculopathy. The biological mechanisms of the acute and chronic rejection associated with VCA, especially ischemic vasculopathy, are important areas of research. However, due to the very small number of VCA patients, the evaluation of proposed mechanisms is better addressed in an experimental model. Multiple groups have used animal models to address some of the relevant unsolved questions in VCA rejection and vasculopathy. Several model designs involving a variety of species are described in the literature. Here we present a reproducible model of VCA heterotopic hindlimb osteomyocutaneous flap in the rat that can be utilized for translational VCA research. This model allows for the serial evaluation of the graft, including biopsies and different imaging modalities, while maintaining a low level of morbidity.


Subject(s)
Choristoma/surgery , Hindlimb/surgery , Surgical Flaps , Translational Research, Biomedical , Animals , Hindlimb/transplantation , Models, Animal , Rats , Transplantation, Homologous , Vascularized Composite Allotransplantation/methods
16.
Naunyn Schmiedebergs Arch Pharmacol ; 392(1): 117-121, 2019 01.
Article in English | MEDLINE | ID: mdl-30470918

ABSTRACT

The chronic reduction of arterial blood pressure by thiazide diuretics (TZD) in hypertensive patients is mediated through an extra-renal mechanism. It is widely held that this extra-renal mechanism is a direct TZD inhibition of vasoconstriction. This study tested whether the TZD, hydrochlorothiazide (HCTZ), inhibited agonist constriction of mesenteric arterioles ex vivo. Mice deficient in the kidney distal convoluted tubule Na+/Cl- cotransporter (NCC), i.e., the target of thiazide inhibition-mediated diuresis, and wild type (WT), were subjected to Na+-restricted diet. Mesenteric arterioles from NCC knockout and WT mice were then isolated, placed under constant pressure, and the inhibitory effects of HCTZ (100 µM) on phenylephrine constriction determined. HCTZ did not inhibit phenylephrine constriction of arterioles from NCC knockout and wild type (WT) mice subjected to Na+-restricted diet. This study suggests that future investigations to identify the extra-renal site of chronic TZD treatment should (1) focus on indirect inhibition of vascular constriction and (2) be determined under clinically relevant conditions. These conditions include chronic TZD at relevant concentrations in hypertensive animals.


Subject(s)
Arterioles/drug effects , Diuretics/pharmacology , Hydrochlorothiazide/pharmacology , Vasoconstriction/drug effects , Animals , Arterioles/physiology , Female , Male , Mesentery/blood supply , Mice, Inbred C57BL , Mice, Knockout , Phenylephrine/pharmacology , Solute Carrier Family 12, Member 3/genetics , Vasoconstrictor Agents/pharmacology
17.
PLoS One ; 13(8): e0202934, 2018.
Article in English | MEDLINE | ID: mdl-30142193

ABSTRACT

An early manifestation of coronary artery disease in advanced age is the development of microvascular dysfunction leading to deficits in diastolic function. Our lab has previously shown that epicardial treatment with adipose-derived stromal vascular fraction (SVF) preserves microvascular function following coronary ischemia in a young rodent model. Follow-up studies showed intravenous (i.v.) delivery of SVF allows the cells to migrate to the walls of small vessels and reset vasomotor tone. Therefore we tested the hypothesis that the i.v. cell injection of SVF would reverse the coronary microvascular dysfunction associated with aging in a rodent model. Fischer 344 rats were divided into 4 groups: young control (YC), old control (OC), old + rat aortic endothelial cells (O+EC) and old + GFP+ SVF cells (O+SVF). After four weeks, cardiac function and coronary flow reserve (CFR) were measured via echocardiography, and hearts were explanted either for histology or isolation of coronary arterioles for vessel reactivity studies. In a subgroup of animals, microspheres were injected during resting and dobutamine-stimulated conditions to measure coronary blood flow. GFP+ SVF cells engrafted and persisted in the myocardium and coronary vasculature four weeks following i.v. injection. Echocardiography showed age-related diastolic dysfunction without accompanying systolic dysfunction; diastolic function was improved in old rats after SVF treatment. Ultrasound and microsphere data both showed increased stimulated coronary blood flow in O+SVF rats compared to OC and O+EC, while isolated vessel reactivity was mostly unchanged. I.v.-injected SVF cells were capable of incorporating into the vasculature of the aging heart and are shown in this study to improve CFR and diastolic function in a model of advanced age. Importantly, SVF injection did not lead to arrhythmias or increased mortality in aged rats. SVF cells provide an autologous cell therapy option for treatment of microvascular and cardiac dysfunction in aged populations.


Subject(s)
Adipocytes/cytology , Arterioles/physiology , Coronary Circulation , Stromal Cells/cytology , Ventricular Function, Left , Acetylcholine/pharmacology , Animals , Arterioles/drug effects , Coronary Circulation/drug effects , Female , Nitroprusside/pharmacology , Rats , Ventricular Function, Left/drug effects
18.
J Neurosci ; 38(26): 5900-5912, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29793971

ABSTRACT

Autophagy mechanisms are well documented in neurons after spinal cord injury (SCI), but the direct functional role of autophagy in oligodendrocyte (OL) survival in SCI pathogenesis remains unknown. Autophagy is an evolutionary conserved lysosomal-mediated catabolic pathway that ensures degradation of dysfunctional cellular components to maintain homeostasis in response to various forms of stress, including nutrient deprivation, hypoxia, reactive oxygen species, DNA damage, and endoplasmic reticulum (ER) stress. Using pharmacological gain and loss of function and genetic approaches, we investigated the contribution of autophagy in OL survival and its role in the pathogenesis of thoracic contusive SCI in female mice. Although upregulation of Atg5 (an essential autophagy gene) occurs after SCI, autophagy flux is impaired. Purified myelin fractions of contused 8 d post-SCI samples show enriched protein levels of LC3B, ATG5, and BECLIN 1. Data show that, while the nonspecific drugs rapamycin (activates autophagy) and spautin 1 (blocks autophagy) were pharmacologically active on autophagy in vivo, their administration did not alter locomotor recovery after SCI. To directly analyze the role of autophagy, transgenic mice with conditional deletion of Atg5 in OLs were generated. Analysis of hindlimb locomotion demonstrated a significant reduction in locomotor recovery after SCI that correlated with a greater loss in spared white matter. Immunohistochemical analysis demonstrated that deletion of Atg5 from OLs resulted in decreased autophagic flux and was detrimental to OL function after SCI. Thus, our study provides evidence that autophagy is an essential cytoprotective pathway operating in OLs and is required for hindlimb locomotor recovery after thoracic SCI.SIGNIFICANCE STATEMENT This study describes the role of autophagy in oligodendrocyte (OL) survival and pathogenesis after thoracic spinal cord injury (SCI). Modulation of autophagy with available nonselective drugs after thoracic SCI does not affect locomotor recovery despite being pharmacologically active in vivo, indicating significant off-target effects. Using transgenic mice with conditional deletion of Atg5 in OLs, this study definitively identifies autophagy as an essential homeostatic pathway that operates in OLs and exhibits a direct functional role in SCI pathogenesis and recovery. Therefore, this study emphasizes the need to discover novel autophagy-specific drugs that specifically modulate autophagy for further investigation for clinical translation to treat SCI and other CNS pathologies related to OL survival.


Subject(s)
Autophagy/physiology , Nerve Regeneration/physiology , Oligodendroglia/pathology , Recovery of Function/physiology , Spinal Cord Injuries/pathology , Animals , Autophagy-Related Protein 5/deficiency , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Spinal Cord Injuries/physiopathology
19.
Nat Commun ; 8(1): 1963, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29213073

ABSTRACT

Neural circuitry in the lumbar spinal cord governs two principal features of locomotion, rhythm and pattern, which reflect intra- and interlimb movement. These features are functionally organized into a hierarchy that precisely controls stepping in a stereotypic, speed-dependent fashion. Here, we show that a specific component of the locomotor pattern can be independently manipulated. Silencing spinal L2 interneurons that project to L5 selectively disrupts hindlimb alternation allowing a continuum of walking to hopping to emerge from the otherwise intact network. This perturbation, which is independent of speed and occurs spontaneously with each step, does not disrupt multi-joint movements or forelimb alternation, nor does it translate to a non-weight-bearing locomotor activity. Both the underlying rhythm and the usual relationship between speed and spatiotemporal characteristics of stepping persist. These data illustrate that hindlimb alternation can be manipulated independently from other core features of stepping, revealing a striking freedom in an otherwise precisely controlled system.


Subject(s)
Hindlimb/innervation , Hindlimb/physiology , Interneurons/physiology , Nerve Net/physiology , Spinal Cord/physiology , Animals , Biomechanical Phenomena , Cell Count , Electromyography , Female , Forelimb/innervation , Forelimb/physiology , Locomotion/physiology , Models, Animal , Motor Neurons/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiopathology , Neural Pathways/physiology , Rats , Rats, Sprague-Dawley , Spatio-Temporal Analysis , Spinal Cord Injuries/physiopathology , Synapses/physiology , Walking/physiology , Walking Speed/physiology
20.
Curr Opin Organ Transplant ; 22(5): 490-498, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28873074

ABSTRACT

PURPOSE OF REVIEW: Controlling acute allograft rejection following vascularized composite allotransplantation requires strict adherence to courses of systemic immunosuppression. Discovering new methods to modulate the alloreactive immune response is essential for widespread application of vascularized composite allotransplantation. Here, we discuss how adipose-derived cellular therapies represent novel treatment options for immune modulation and tolerance induction in vascularized composite allotransplantation. RECENT FINDINGS: Adipose-derived mesenchymal stromal cells are cultured from autologous or allogeneic adipose tissue and possess immunomodulatory qualities capable of prolonging allograft survival in animal models of vascularized composite allotransplantation. Similar immunosuppressive and immunomodulatory effects have been observed with noncultured adipose stromal-vascular-fraction-derived therapies, albeit publication of in-vivo stromal vascular fraction cell modulation in transplantation models is lacking. However, both stromal vascular fraction and adipose derived mesenchymal stem cell therapies have the potential to effectively modulate acute allograft rejection via recruitment and induction of regulatory immune cells. SUMMARY: To date, most reports focus on adipose derived mesenchymal stem cells for immune modulation in transplantation despite their phenotypic plasticity and reliance upon culture expansion. Along with the capacity for immune modulation, the supplemental wound healing and vasculogenic properties of stromal vascular fraction, which are not shared by adipose derived mesenchymal stem cells, hint at the profound therapeutic impact stromal vascular fraction-derived treatments could have on controlling acute allograft rejection and tolerance induction in vascularized composite allotransplantation. Ongoing projects in the next few years will help design the best applications of these well tolerated and effective treatments that should reduce the risk/benefit ratio and allow more patients access to vascularized composite allotransplantation therapy.


Subject(s)
Adipose Tissue/transplantation , Graft Survival/immunology , Immunosuppression Therapy/methods , Vascularized Composite Allotransplantation/methods , Animals , Humans , Rats , Rats, Inbred Lew , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...