Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mutagenesis ; 39(2): 146-155, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38183270

ABSTRACT

The two-test in vitro battery for genotoxicity testing (Ames and micronucleus) has in the majority of cases replaced the three-test battery (as two-test plus mammalian cell gene mutation assay) for the routine testing of chemicals, pharmaceuticals, cosmetics, and agrochemical metabolites originating from food and feed as well as from water treatment. The guidance for testing agrochemical groundwater metabolites, however, still relies on the three-test battery. Data collated in this study from 18 plant protection and related materials highlights the disparity between the often negative Ames and in vitro chromosome aberration data and frequently positive in vitro mammalian cell gene mutation assays. Sixteen of the 18 collated materials with complete datasets were Ames negative, and overall had negative outcomes in in vitro chromosome damage tests (weight of evidence from multiple tests). Mammalian cell gene mutation assays (HPRT and/or mouse lymphoma assay (MLA)) were positive in at least one test for every material with this data. Where both MLA and HPRT tests were performed on the same material, the HPRT seemed to give fewer positive responses. In vivo follow-up tests included combinations of comet assays, unscheduled DNA synthesis, and transgenic rodent gene mutation assays, all gave negative outcomes. The inclusion of mammalian cell gene mutation assays in a three-test battery for groundwater metabolites is therefore not justified and leads to unnecessary in vivo follow-up testing.


Subject(s)
Hypoxanthine Phosphoribosyltransferase , Lymphoma , Mice , Animals , Mutagenicity Tests , Comet Assay , Rodentia , Agrochemicals , Micronucleus Tests , DNA Damage
2.
Prostate ; 54(2): 133-43, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12497586

ABSTRACT

BACKGROUND: Therapeutic strategies to target the molecular basis of hormone and drug resistance of prostate cancer cells are needed. Since protein kinase Calpha (PKCalpha) is thought to have a role in the development of the androgen-independent phenotype of prostate cancer cells and in apoptosis suppression, the objective of the present study was to test whether specific inhibition of PKCalpha by a hammerhead ribozyme was able to sensitize androgen-independent prostate cancer cells the effects of apoptosis-inducing anticancer drugs. METHODS: An active ribozyme (PKCalphaRZ) targeting codon 4 in human PKCalpha mRNA was synthesized by in vitro transcription. A mutant ribozyme (PKCalphamutRZ) was also made by deleting G(12) from the catalytic core of the active ribozyme and used as a control throughout the study. The double-stranded, ribozyme-encoding sequences were then inserted into an expression vector under the control of the cytomegalovirus promoter and delivered to growing prostate cancer cells (DU145 and PC-3) by a DOTAP-mediated transfer. A neomycin resistance gene on the vector was used to select ribozyme-expressing clones. The clones were analyzed for PKCalpha expression, sensitivity to anticancer drugs and ability to undergo drug-induced apoptosis. RESULTS: Two DU145-derived cell clones expressing the active ribozyme (DURZ 2 and DURZ 12) and one clone expressing the catalytically inactive ribozyme (DUmutRZ) were selected for the study. DURZ 2 and DURZ 12 were characterized by a markedly (about 40-50%) lower PKCalpha protein level than parental DU145 cells, whereas no reduction in PKCalpha expression was observed in DUmutRZ cells. Results of cytotoxicity experiments indicated that DURZ 2 and DURZ 12 but not DUmutRZ cells were significantly more sensitive than parental DU145 cells to a 1 hr exposure to the mononuclear platinum compounds (cisplatin and oxaliplatin) and showed an increased susceptibility to undergo cisplatin-induced apoptosis. A significantly enhanced apoptotic response to cisplatin was also observed in a PC-3-derived polyclonal cell population endogenously expressing the active ribozyme. CONCLUSIONS: Results of the study highlight the importance of PKCalpha in the response of prostate cancer cells to mononuclear platinum compounds and indicate specific inhibition of the enzyme as a potential therapeutic strategy to sensitize androgen-independent prostate cancer cells to these drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cisplatin/pharmacology , Isoenzymes/pharmacology , Organoplatinum Compounds/pharmacology , Prostatic Neoplasms/pathology , Protein Kinase C/pharmacology , Base Sequence , Cloning, Molecular , Drug Resistance, Neoplasm , Humans , Isoenzymes/antagonists & inhibitors , Male , Molecular Sequence Data , Oxaliplatin , Phenotype , Protein Kinase C/antagonists & inhibitors , Protein Kinase C-alpha , RNA, Catalytic , Tumor Cells, Cultured
3.
Clin Cancer Res ; 8(12): 3782-7, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12473590

ABSTRACT

PURPOSE: The p16(INK4A) tumor suppressor gene is inactivated in many solid tumors, including non-small cell lung cancers (NSCLCs), through promoter hypermethylation. Presence of p16(INK4A) hypermethylation in precursor lesions of NSCLC and in body fluids of individuals at risk makes it a potential candidate for early disease detection. However, the current low sensitivity of p16(INK4A) hypermethylation detection in plasma limits its consideration in a diagnostic grid. EXPERIMENTAL DESIGN: A fluorescent methylation-specific PCR assay (F-MSP) was established to evaluate p16(INK4A) promoter hypermethylation in 35 NSCLC and paired plasma samples and in 15 plasmas from healthy donors. F-MSP sensitivity was investigated in combination with microsatellite alterations on 3p (evaluated by fluorescent PCR), K-ras mutations (determined by a mutant-enriched PCR), and quantification of circulating DNA. Assay results were analyzed by two-sided chi(2) or Fisher's exact tests. RESULTS: p16(INK4A) promoter hypermethylation, detectable by F-MSP in 22 of 35 NSLCs (63%) and in 12 of 22 (55%) plasmas from patients with methylated tumors, was independent of microsatellite alterations (detectable in 57% of tumors and 50% of paired plasmas), K-ras mutations (detectable in 31% of tumors but in no paired plasma), or amount of circulating DNA. p16(INK4A) methylation in association with microsatellite alterations identified 62% (18 of 29) of plasma samples from patients presenting the same alteration in their tumors, and its sensitivity increased to 80% when combined with the amount of circulating DNA. CONCLUSIONS: The establishment of F-MSP remarkably improved p16(INK4A) promoter hypermethylation detection in plasmas from NSCLC patients. Microsatellite alterations, circulating DNA quantification, and p16(INK4A) hypermethylation might contribute to a diagnostic grid for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Methylation , DNA, Neoplasm/blood , Lung Neoplasms/genetics , Promoter Regions, Genetic/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Chromosomes, Human, Pair 3/genetics , Cohort Studies , Female , Genes, ras/genetics , Humans , Lung Neoplasms/pathology , Male , Microsatellite Repeats , Middle Aged , Neoplasm Staging , Polymerase Chain Reaction , Prospective Studies , Survival Rate , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...