Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(1): e0206747, 2019.
Article in English | MEDLINE | ID: mdl-30640963

ABSTRACT

New data are reported from analyses of stomach contents from 114 long-finned pilot whales mass-stranded at four locations around Tasmania, Australia from 1992-2006. Identifiable prey remains were recovered from 84 (74%) individuals, with 30 (26%) individuals (17 females and 13 males) having empty stomachs. Prey remains comprised 966 identifiable lower beaks and 1244 upper beaks, belonging to 17 families (26 species) of cephalopods. Ommastrephidae spp. were the most important cephalopod prey accounting for 16.9% by number and 45.6% by reconstructed mass. Lycoteuthis lorigera was the next most important, followed by Ancistrocheirus lesueurii. Multivariate statistics identified significant differences in diet among the four stranding locations. Long-finned pilot whales foraging off Southern Australia appear to be targeting a diverse assemblage of prey (≥10 species dominated by cephalopods). This is compared to other similar studies from New Zealand and some locations in the Northern Hemisphere, where the diet has been reported to be primarily restricted to ≤3 species dominated by cephalopods. This study emphasises the importance of cephalopods as primary prey for Southern long-finned pilot whales and other marine vertebrates, and has increased our understanding of long-finned pilot whale diet in Southern Ocean waters.


Subject(s)
Cephalopoda , Gastrointestinal Contents , Whales, Pilot/physiology , Animals , Carnivory/physiology , Conservation of Natural Resources , Female , Food Chain , Male , Stomach , Tasmania
2.
PLoS One ; 13(1): e0189200, 2018.
Article in English | MEDLINE | ID: mdl-29298312

ABSTRACT

In threatened wildlife populations, it is important to determine whether observed low genetic diversity may be due to recent anthropogenic pressure or the consequence of historic events. Historical size of the Irrawaddy dolphin (Orcaella brevirostris) population inhabiting the Mekong River is unknown and there is significant concern for long-term survival of the remaining population as a result of low abundance, slow reproduction rate, high neonatal mortality, and continuing anthropogenic threats. We investigated population structure and reconstructed the demographic history based on 60 Irrawaddy dolphins samples collected between 2001 and 2009. The phylogenetic analysis indicated reciprocal monophyly of Mekong River Orcaella haplotypes with respect to haplotypes from other populations, suggesting long-standing isolation of the Mekong dolphin population from other Orcaella populations. We found that at least 85% of all individuals in the two main study areas: Kratie and Stung Treng, bore the same mitochondrial haplotype. Out of the 21 microsatellite loci tested, only ten were polymorphic and exhibited very low levels of genetic diversity. Both individual and frequency-based approaches suggest very low and non-significant genetic differentiation of the Mekong dolphin population. Evidence for recent bottlenecks was equivocal. Some results suggested a recent exponential decline in the Mekong dolphin population, with the current size being only 5.2% of the ancestral population. In order for the Mekong dolphin population to have any potential for long-term survival, it is imperative that management priorities focus on preventing any further population fragmentation or genetic loss, reducing or eliminating anthropogenic threats, and promoting connectivity between all subpopulations.


Subject(s)
Dolphins/genetics , Genetic Variation , Animals , Asia, Southeastern , Demography
3.
Adv Mar Biol ; 73: 219-71, 2016.
Article in English | MEDLINE | ID: mdl-26790894

ABSTRACT

The Australian humpback dolphin, Sousa sahulensis, has recently been described to occur in northern Australian coastal waters. However, its distribution in adjacent waters of the Pacific Islands and New Guinea remains largely unknown. Although there have been few studies conducted on inshore dolphins in these regions, the available information records humpback dolphins primarily from the Kikori Delta in Papua New Guinea, and Bird's Head Seascape in West Papua. Research in southern Papua New Guinea indicates that humpback dolphins are indeed S. sahulensis, based on cranial and external morphometrics, external colouration and the preliminary genetic analysis presented here. A similar situation exists for the Australian snubfin dolphin, Orcaella heinsohni, where it is assumed that the species also occurs along the Sahul Shelf coastal waters of northern Australia and New Guinea. There are anecdotal reports of direct catch of Australian humpback dolphins for use as shark bait, coastal development is increasing, and anthropogenic impacts will continue to escalate as human populations expand into previously uninhabited regions. Future research and management priorities for the Governments of the Pacific Islands and Indonesia will need to focus on inshore dolphins in known regional hotspots, as current bycatch levels appear unsustainable.


Subject(s)
Conservation of Natural Resources , Dolphins/physiology , Endangered Species , Animal Distribution , Animal Migration , Animals , Australia , Behavior, Animal/physiology , Ecosystem , New Guinea , Pacific Islands , Population Dynamics , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...