Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 429(6990): 369-74, 2004 May 27.
Article in English | MEDLINE | ID: mdl-15164053

ABSTRACT

Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.


Subject(s)
Chromosomes, Human, Pair 9/genetics , Genes , Physical Chromosome Mapping , Base Composition , Euchromatin/genetics , Evolution, Molecular , Female , Gene Duplication , Genes, Duplicate/genetics , Genetic Variation/genetics , Genetics, Medical , Genomics , Heterochromatin/genetics , Humans , Male , Neoplasms/genetics , Neurodegenerative Diseases/genetics , Pseudogenes/genetics , Sequence Analysis, DNA , Sex Determination Processes
2.
Nature ; 425(6960): 805-11, 2003 Oct 23.
Article in English | MEDLINE | ID: mdl-14574404

ABSTRACT

Chromosome 6 is a metacentric chromosome that constitutes about 6% of the human genome. The finished sequence comprises 166,880,988 base pairs, representing the largest chromosome sequenced so far. The entire sequence has been subjected to high-quality manual annotation, resulting in the evidence-supported identification of 1,557 genes and 633 pseudogenes. Here we report that at least 96% of the protein-coding genes have been identified, as assessed by multi-species comparative sequence analysis, and provide evidence for the presence of further, otherwise unsupported exons/genes. Among these are genes directly implicated in cancer, schizophrenia, autoimmunity and many other diseases. Chromosome 6 harbours the largest transfer RNA gene cluster in the genome; we show that this cluster co-localizes with a region of high transcriptional activity. Within the essential immune loci of the major histocompatibility complex, we find HLA-B to be the most polymorphic gene on chromosome 6 and in the human genome.


Subject(s)
Chromosomes, Human, Pair 6/genetics , Genes/genetics , Physical Chromosome Mapping , Animals , Exons/genetics , Genetic Diseases, Inborn/genetics , HLA-B Antigens/genetics , Humans , Pseudogenes/genetics , RNA, Transfer/genetics , Sequence Analysis, DNA
3.
Nature ; 414(6866): 865-71, 2001.
Article in English | MEDLINE | ID: mdl-11780052

ABSTRACT

The finished sequence of human chromosome 20 comprises 59,187,298 base pairs (bp) and represents 99.4% of the euchromatic DNA. A single contig of 26 megabases (Mb) spans the entire short arm, and five contigs separated by gaps totalling 320 kb span the long arm of this metacentric chromosome. An additional 234,339 bp of sequence has been determined within the pericentromeric region of the long arm. We annotated 727 genes and 168 pseudogenes in the sequence. About 64% of these genes have a 5' and a 3' untranslated region and a complete open reading frame. Comparative analysis of the sequence of chromosome 20 to whole-genome shotgun-sequence data of two other vertebrates, the mouse Mus musculus and the puffer fish Tetraodon nigroviridis, provides an independent measure of the efficiency of gene annotation, and indicates that this analysis may account for more than 95% of all coding exons and almost all genes.


Subject(s)
Chromosomes, Human, Pair 20 , Animals , Base Sequence , Computational Biology , Contig Mapping , DNA , Genetic Diseases, Inborn/genetics , Genetic Variation , Humans , Mice , Physical Chromosome Mapping , Proteome , Sequence Analysis, DNA
4.
Nature ; 402(6761): 489-95, 1999 Dec 02.
Article in English | MEDLINE | ID: mdl-10591208

ABSTRACT

Knowledge of the complete genomic DNA sequence of an organism allows a systematic approach to defining its genetic components. The genomic sequence provides access to the complete structures of all genes, including those without known function, their control elements, and, by inference, the proteins they encode, as well as all other biologically important sequences. Furthermore, the sequence is a rich and permanent source of information for the design of further biological studies of the organism and for the study of evolution through cross-species sequence comparison. The power of this approach has been amply demonstrated by the determination of the sequences of a number of microbial and model organisms. The next step is to obtain the complete sequence of the entire human genome. Here we report the sequence of the euchromatic part of human chromosome 22. The sequence obtained consists of 12 contiguous segments spanning 33.4 megabases, contains at least 545 genes and 134 pseudogenes, and provides the first view of the complex chromosomal landscapes that will be found in the rest of the genome.


Subject(s)
Chromosomes, Human, Pair 22 , Human Genome Project , Sequence Analysis, DNA , Animals , Chromosome Mapping/methods , DNA , Gene Dosage , Humans , Mice , Molecular Sequence Data , Repetitive Sequences, Nucleic Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...