Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cells ; 10(5)2021 05 14.
Article in English | MEDLINE | ID: mdl-34068927

ABSTRACT

Destruction of alveoli by apoptosis induced by cigarette smoke (CS) is a major driver of emphysema pathogenesis. However, when compared to cells isolated from non-smokers, primary human lung microvascular endothelial cells (HLMVECs) isolated from chronic smokers are more resilient when exposed to apoptosis-inducing ceramide. Whether this adaptation restores homeostasis is unknown. To better understand the phenotype of HLMVEC in smokers, we interrogated a major pro-survival pathway supported by sphingosine-1-phosphate (S1P) signaling via S1P receptor 1 (S1P1). Primary HLMVECs from lungs of non-smoker or smoker donors were isolated and studied in culture for up to five passages. S1P1 mRNA and protein abundance were significantly decreased in HLMVECs from smokers compared to non-smokers. S1P1 was also decreased in situ in lungs of mice chronically exposed to CS. Levels of S1P1 expression tended to correlate with those of autophagy markers, and increasing S1P (via S1P lyase knockdown with siRNA) stimulated baseline macroautophagy with lysosomal degradation. In turn, loss of S1P1 (siRNA) inhibited these effects of S1P on HLMVECs autophagy. These findings suggest that the anti-apoptotic phenotype of HLMVECs from smokers may be maladaptive, since it is associated with decreased S1P1 expression that may impair their autophagic response to S1P.


Subject(s)
Cigarette Smoking/adverse effects , Endothelial Cells , Lung , Microvessels , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Microvessels/metabolism , Microvessels/pathology
2.
Am J Respir Cell Mol Biol ; 64(5): 629-640, 2021 05.
Article in English | MEDLINE | ID: mdl-33662226

ABSTRACT

Deficiency of ASM (acid sphingomyelinase) causes the lysosomal storage Niemann-Pick disease (NPD). Patients with NPD type B may develop progressive interstitial lung disease with frequent respiratory infections. Although several investigations using the ASM-deficient (ASMKO) mouse NPD model revealed inflammation and foamy macrophages, there is little insight into the pathogenesis of NPD-associated lung disease. Using ASMKO mice, we report that ASM deficiency is associated with a complex inflammatory phenotype characterized by marked accumulation of monocyte-derived CD11b+ macrophages and expansion of airspace/alveolar CD11c+ CD11b- macrophages, both with increased size, granularity, and foaminess. Both the alternative and classical pathways were activated, with decreased in situ phagocytosis of opsonized (Fc-coated) targets, preserved clearance of apoptotic cells (efferocytosis), secretion of Th2 cytokines, increased CD11c+/CD11b+ cells, and more than a twofold increase in lung and plasma proinflammatory cytokines. Macrophages, neutrophils, eosinophils, and noninflammatory lung cells of ASMKO lungs also exhibited marked accumulation of chitinase-like protein Ym1/2, which formed large eosinophilic polygonal Charcot-Leyden-like crystals. In addition to providing insight into novel features of lung inflammation that may be associated with NPD, our report provides a novel connection between ASM and the development of crystal-associated lung inflammation with alterations in macrophage biology.


Subject(s)
Glycoproteins/immunology , Lysophospholipase/immunology , Macrophages, Alveolar/immunology , Macrophages/immunology , Niemann-Pick Disease, Type A/immunology , Niemann-Pick Disease, Type B/immunology , Pneumonia/immunology , Sphingomyelin Phosphodiesterase/immunology , Animals , CD11 Antigens/genetics , CD11 Antigens/immunology , CD11b Antigen/genetics , CD11b Antigen/immunology , Cell Size , Chitinases/genetics , Chitinases/immunology , Disease Models, Animal , Eosinophils/immunology , Eosinophils/pathology , Female , Gene Expression , Glycoproteins/genetics , Humans , Lectins/genetics , Lectins/immunology , Lung/immunology , Lung/pathology , Lysophospholipase/genetics , Macrophages/pathology , Macrophages, Alveolar/pathology , Male , Mice , Mice, Knockout , Neutrophils/immunology , Neutrophils/pathology , Niemann-Pick Disease, Type A/enzymology , Niemann-Pick Disease, Type A/genetics , Niemann-Pick Disease, Type A/pathology , Niemann-Pick Disease, Type B/enzymology , Niemann-Pick Disease, Type B/genetics , Niemann-Pick Disease, Type B/pathology , Phagocytosis , Pneumonia/enzymology , Pneumonia/genetics , Pneumonia/pathology , Sphingomyelin Phosphodiesterase/deficiency , Sphingomyelin Phosphodiesterase/genetics , Th1-Th2 Balance/genetics , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/immunology
3.
Arterioscler Thromb Vasc Biol ; 40(5): 1195-1206, 2020 05.
Article in English | MEDLINE | ID: mdl-32212853

ABSTRACT

OBJECTIVE: MicroRNA-126-3p (miR-126) is required for angiogenesis during organismal development or the repair of injured arterial vasculature. The role of miR-126 in lung microvascular endothelial cells, which are essential for gas exchange and for lung injury repair and regeneration, remains poorly understood. Considering the significant heterogeneity of endothelial cells from different vascular beds, we aimed to determine the role of miR-126 in regulating lung microvascular endothelial cell function and to elucidate its downstream signaling pathways. Approach and Results: Overexpression and knockdown of miR-126 in primary human lung microvascular endothelial cells (HLMVEC) were achieved via transfections of miR-126 mimics and antisense inhibitors. Increasing miR-126 levels in HLMVEC reduced cell proliferation, weakened tube formation, and increased cell apoptosis, whereas decreased miR-126 levels stimulated cell proliferation and tube formation. Whole-genome RNA sequencing revealed that miR-126 was associated with an antiangiogenic and proapoptotic transcriptomic profile. Using validation assays and knockdown approaches, we identified that the effect of miR-126 on HLMVEC angiogenesis was mediated by the LAT1 (L-type amino acid transporter 1), via regulation of mTOR (mammalian target of rapamycin) signaling. Furthermore, downregulation of miR-126 in HLMVEC inhibited cell apoptosis and improved endothelial tube formation during exposure to environmental insults such as cigarette smoke. CONCLUSIONS: miR-126 inhibits HLMVEC angiogenic function by targeting the LAT1-mTOR signaling axis, suggesting that miR-126 inhibition may be useful for conditions associated with microvascular loss, whereas miR-126 augmentation may help control unwanted microvascular angiogenesis.


Subject(s)
Endothelial Cells/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Lung/blood supply , MicroRNAs/metabolism , Microvessels/metabolism , Neovascularization, Physiologic , ADAM Proteins/genetics , ADAM Proteins/metabolism , Apoptosis , Cell Movement , Cell Proliferation , Cells, Cultured , Gene Expression Regulation , Humans , Large Neutral Amino Acid-Transporter 1/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/genetics , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
4.
Am J Respir Crit Care Med ; 200(9): 1113-1125, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31265321

ABSTRACT

Rationale: The loss of pulmonary endothelial cells in emphysema is associated with increased lung ceramide. Ceramide perturbations may cause adaptive alterations in other bioactive sphingolipids, with pathogenic implications. We previously reported a negative correlation between emphysema and circulating glycosphingolipids (GSLs). Glucosylceramide (GlcCer), the initial GSL synthesized from ceramide by GCS (GlcCer synthase), is required for embryonic survival, but its role in the lung is unknown.Objectives: To determine if cigarette smoke (CS) alters lung GlcCer and to elucidate the role of GCS in lung endothelial cell fate.Methods: GlcCer was measured by tandem mass spectrometry in BAL fluid of CS- or elastase-exposed mice, and GCS was detected by Western blotting in chronic obstructive pulmonary disease lungs and CS extract-exposed primary human lung microvascular endothelial cells (HLMVECs). The role of GlcCer and GCS on mTOR (mammalian target of rapamycin) signaling, autophagy, lysosomal function, and cell death were studied in HLMVECs with or without CS exposure.Measurements and Main Results: Mice exposed to chronic CS or to elastase, and patients with chronic obstructive pulmonary disease, exhibited significantly decreased lung GlcCer and GCS. In mice, lung GlcCer levels were negatively correlated with airspace size. GCS inhibition in HLMVEC increased lysosomal pH, suppressed mTOR signaling, and triggered autophagy with impaired lysosomal degradation and apoptosis, recapitulating CS effects. In turn, increasing GlcCer by GCS overexpression in HLMVEC improved autophagic flux and attenuated CS-induced apoptosis.Conclusions: Decreased GSL production in response to CS may be involved in emphysema pathogenesis, associated with autophagy with impaired lysosomal degradation and lung endothelial cell apoptosis.


Subject(s)
Endothelial Cells/pathology , Glucosylceramides/metabolism , Pulmonary Emphysema/etiology , Pulmonary Emphysema/metabolism , Smoking/adverse effects , Animals , Autophagy , Cell Culture Techniques , Cell Death , Disease Models, Animal , Mice , Pulmonary Emphysema/pathology
5.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L558-L566, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30628489

ABSTRACT

Proapoptotic and monocyte chemotactic endothelial monocyte-activating protein 2 (EMAPII) is released extracellularly during cigarette smoke (CS) exposure. We have previously demonstrated that, when administered intratracheally during chronic CS exposures, neutralizing rat antibodies to EMAPII inhibited endothelial cell apoptosis and lung inflammation and reduced airspace enlargement in mice (DBA/2J strain). Here we report further preclinical evaluation of EMAPII targeting using rat anti-EMAPII antibodies via either nebulization or subcutaneous injection. Both treatment modalities efficiently ameliorated emphysema-like disease in two different strains of CS-exposed mice, DBA/2J and C57BL/6. Of relevance for clinical applicability, this treatment showed therapeutic and even curative potential when administered either during or following CS-induced emphysema development, respectively. In addition, a fully humanized neutralizing anti-EMAPII antibody administered subcutaneously to mice during CS exposure retained anti-apoptotic and anti-inflammatory effects similar to that of the parent rat antibody. Furthermore, humanized anti-EMAPII antibody treatment attenuated CS-induced autophagy and restored mammalian target of rapamycin signaling in the lungs of mice, despite ongoing CS exposure. Together, our results demonstrate that EMAPII secretion is involved in CS-induced lung inflammation and cell injury, including apoptosis and autophagy, and that a humanized EMAPII neutralizing antibody may have therapeutic potential in emphysema.


Subject(s)
Antibodies, Neutralizing/pharmacology , Lung Injury/drug therapy , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Emphysema/drug therapy , Smoking/adverse effects , Animals , Autophagy/drug effects , Cytokines/drug effects , Lung Injury/metabolism , Mice, Inbred C57BL , Mice, Inbred DBA , Monocytes/drug effects , Monocytes/metabolism , Neoplasm Proteins/drug effects , Pneumonia/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/metabolism , RNA-Binding Proteins/drug effects
6.
Respir Res ; 19(1): 107, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855321

ABSTRACT

BACKGROUND: Several inflammatory lung diseases display abundant presence of hyaluronic acid (HA) bound to heavy chains (HC) of serum protein inter-alpha-inhibitor (IαI) in the extracellular matrix. The HC-HA modification is critical to neutrophil sequestration in liver sinusoids and to survival during experimental lipopolysaccharide (LPS)-induced sepsis. Therefore, the covalent HC-HA binding, which is exclusively mediated by tumor necrosis factor α (TNFα)-stimulated-gene-6 (TSG-6), may play an important role in the onset or the resolution of lung inflammation in acute lung injury (ALI) induced by respiratory infection. METHODS: Reversible ALI was induced by a single intratracheal instillation of LPS or Pseudomonas aeruginosa in mice and outcomes were studied for up to six days. We measured in the lung or the bronchoalveolar fluid HC-HA formation, HA immunostaining localization and roughness, HA fragment abundance, and markers of lung inflammation and lung injury. We also assessed TSG-6 secretion by TNFα- or LPS-stimulated human alveolar macrophages, lung fibroblast Wi38, and bronchial epithelial BEAS-2B cells. RESULTS: Extensive HC-modification of lung HA, localized predominantly in the peri-broncho-vascular extracellular matrix, was notable early during the onset of inflammation and was markedly decreased during its resolution. Whereas human alveolar macrophages secreted functional TSG-6 following both TNFα and LPS stimulation, fibroblasts and bronchial epithelial cells responded to only TNFα. Compared to wild type, TSG-6-KO mice, which lacked HC-modified HA, exhibited modest increases in inflammatory cells in the lung, but no significant differences in markers of lung inflammation or injury, including histopathological lung injury scores. CONCLUSIONS: Respiratory infection induces rapid HC modification of HA followed by fragmentation and clearance, with kinetics that parallel the onset and resolution phase of ALI, respectively. Alveolar macrophages may be an important source of pulmonary TSG-6 required for HA remodeling. The formation of HC-modified HA had a minor role in the onset, severity, or resolution of experimental reversible ALI induced by respiratory infection with gram-negative bacteria.


Subject(s)
Acute Lung Injury/metabolism , Alpha-Globulins/metabolism , Hyaluronic Acid/metabolism , Macrophages, Alveolar/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/microbiology , Animals , Cells, Cultured , Humans , Lipopolysaccharides/toxicity , Macrophages, Alveolar/drug effects , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Transgenic , Mucociliary Clearance/drug effects , Mucociliary Clearance/physiology , Protein Binding , Time Factors
7.
J Virol ; 90(6): 2767-82, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26719256

ABSTRACT

UNLABELLED: We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10(4.5) infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease. IMPORTANCE: Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS.


Subject(s)
Brain/immunology , Encephalitis Virus, Venezuelan Equine/immunology , Gene Expression , Immunity, Innate , RNA Virus Infections/prevention & control , West Nile virus/immunology , alpha-Synuclein/biosynthesis , Animals , Brain/virology , Cells, Cultured , Encephalitis Virus, Venezuelan Equine/isolation & purification , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Neurons/immunology , Neurons/virology , RNA Virus Infections/immunology , RNA Virus Infections/virology , Survival Analysis , West Nile virus/isolation & purification
8.
J Virol ; 88(16): 9458-71, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24920798

ABSTRACT

UNLABELLED: Since its introduction in New York City, NY, in 1999, West Nile virus (WNV) has spread to all 48 contiguous states of the United States and is now the leading cause of epidemic encephalitis in North America. As a member of the family Flaviviridae, WNV is part of a group of clinically important human pathogens, including dengue virus and Japanese encephalitis virus. The members of this family of positive-sense, single-stranded RNA viruses have limited coding capacity and are therefore obligated to co-opt a significant amount of cellular factors to translate their genomes effectively. Our previous work has shown that WNV growth was independent of macroautophagy activation, but the role of the evolutionarily conserved mammalian target of rapamycin (mTOR) pathway during WNV infection was not well understood. mTOR is a serine/threonine kinase that acts as a central cellular censor of nutrient status and exercises control of vital anabolic and catabolic cellular responses such as protein synthesis and autophagy, respectively. We now show that WNV activates mTOR and cognate downstream activators of cap-dependent protein synthesis at early time points postinfection and that pharmacologic inhibition of mTOR (KU0063794) significantly reduced WNV growth. We used an inducible Raptor and Rictor knockout mouse embryonic fibroblast (MEF) system to further define the role of mTOR complexes 1 and 2 in WNV growth and viral protein synthesis. Following inducible genetic knockout of the major mTOR cofactors raptor (TOR complex 1 [TORC1]) and rictor (TORC2), we now show that TORC1 supports flavivirus protein synthesis via cap-dependent protein synthesis pathways and supports subsequent WNV growth. IMPORTANCE: Since its introduction in New York City, NY, in 1999, West Nile virus (WNV) has spread to all 48 contiguous states in the United States and is now the leading cause of epidemic encephalitis in North America. Currently, the mechanism by which flaviviruses such as WNV translate their genomes in host cells is incompletely understood. Elucidation of the host mechanisms required to support WNV genome translation will provide broad understanding for the basic mechanisms required to translate capped viral RNAs. We now show that WNV activates mTOR and cognate downstream activators of cap-dependent protein synthesis at early time points postinfection. Following inducible genetic knockout of the major mTOR complex cofactors raptor (TORC1) and rictor (TORC2), we now show that TORC1 supports WNV growth and protein synthesis. This study demonstrates the requirement for TORC1 function in support of WNV RNA translation and provides insight into the mechanisms underlying flaviviral RNA translation in mammalian cells.


Subject(s)
Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Viral Proteins/metabolism , West Nile virus/metabolism , Animals , Cell Line , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...