Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 4(15): 16318-16329, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31616809

ABSTRACT

Human UDP-glucose dehydrogenase (hUGDH) oxidizes uridine diphosphate (UDP)-glucose to UDP-glucuronic acid, an essential substrate in the phase II metabolism of drugs. The activity of hUGDH is controlled by an atypical allosteric mechanism in which the feedback inhibitor UDP-xylose competes with the substrate for the active site and triggers a buried allosteric switch to produce an inactive complex (EΩ). Previous comparisons with a nonallosteric UGDH identified six large-to-small substitutions that produce packing defects in the protein core and provide the conformational flexibility necessary for the allosteric transition. Here, we test the hypothesis that these large-to-small substitutions form a motif that can be used to identify allosteric UGDHs. Caenorhabditis elegans UGDH (cUGDH) conserves this motif with the exception of an Ala-to-Pro substitution in position 109. The crystal structures of unliganded and UDP-xylose bound cUGDH show that the A109P substitution is accommodated by an Asn-to-Ser substitution at position 290. Steady-state analysis and sedimentation velocity studies show that the allosteric transition is conserved in cUGDH. The enzyme also exhibits hysteresis in progress curves and negative cooperativity with respect to NAD+ binding. Both of these phenomena are conserved in the human enzyme, which is strong evidence that these represent fundamental features of atypical allostery in UGDH. A phylogenetic analysis of UGDH shows that the atypical allostery motif is ancient and identifies a potential transition point in the evolution of the UGDH family.

2.
Biochemistry ; 58(46): 4641-4654, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31652058

ABSTRACT

ChuW, ChuX, and ChuY are contiguous genes downstream from a single promoter that are expressed in the enteric pathogen Escherichia coli O157:H7 when iron is limiting. These genes, and the corresponding proteins, are part of a larger heme uptake and utilization operon that is common to several other enteric pathogens, such as Vibrio cholerae. The aerobic degradation of heme has been well characterized in humans and several pathogenic bacteria, including E. coli O157:H7, but only recently was it shown that ChuW catalyzes the anaerobic degradation of heme to release iron and produce a reactive tetrapyrrole termed "anaerobilin". ChuY has been shown to function as an anaerobilin reductase, in a role that parallels biliverdin reductase. In this work we have employed biochemical and biophysical approaches to further interrogate the mechanism of the anaerobic degradation of heme. We demonstrate that the iron atom of the heme does not participate in the catalytic mechanism of ChuW and that S-adenosyl-l-methionine binding induces conformational changes that favor catalysis. In addition, we show that ChuX and ChuY have synergistic and additive effects on the turnover rate of ChuW. Finally, we have found that ChuS is an effective source of heme or protoporphyrin IX for ChuW under anaerobic conditions. These data indicate that ChuS may have dual functionality in vivo. Specifically, ChuS serves as a heme oxygenase during aerobic metabolism of heme but functions as a cytoplasmic heme storage protein under anaerobic conditions, akin to what has been shown for PhuS (45% sequence identity) from Pseudomonas aeruginosa.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Heme/metabolism , Hemeproteins/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Protein Methyltransferases/metabolism , Anaerobiosis , Molecular Docking Simulation , S-Adenosylmethionine/metabolism
3.
Biochemistry ; 58(7): 951-964, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30640434

ABSTRACT

Cobamides are coenzymes used by cells from all domains of life but made de novo by only some bacteria and archaea. The last steps of the cobamide biosynthetic pathway activate the corrin ring and the lower ligand base, condense the activated intermediates, and dephosphorylate the product prior to the release of the biologically active coenzyme. In bacteria, a phosphoribosyltransferase (PRTase) enyzme activates the base into its α-mononucleotide. The enzyme from Salmonella enterica ( SeCobT) has been extensively biochemically and structurally characterized. The crystal structure of the putative PRTase from the archaeum Methanocaldococcus jannaschii ( MjCobT) is known, but its function has not been validated. Here we report the in vivo and in vitro characterization of MjCobT. In vivo, in vitro, and phylogenetic data reported here show that MjCobT belongs to a new class of NaMN-dependent PRTases. We also show that the Synechococcus sp. WH7803 CobT protein has PRTase activity in vivo. Lastly, results of isothermal titration calorimetry and analytical ultracentrifugation analysis show that the biologically active form of MjCobT is a dimer, not a trimer, as suggested by its crystal structure.


Subject(s)
Archaeal Proteins/metabolism , Bacterial Proteins/metabolism , Cobamides/biosynthesis , Archaea/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cyanobacteria/metabolism , Hydrogen-Ion Concentration , Methanococcus/enzymology , Methanococcus/genetics , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Osmolar Concentration , Pentosyltransferases/chemistry , Pentosyltransferases/genetics , Pentosyltransferases/metabolism , Phosphates/chemistry , Phosphates/metabolism , Phylogeny , Potassium Compounds/chemistry , Potassium Compounds/metabolism , Salmonella enterica/genetics , Salmonella enterica/metabolism , Substrate Specificity
4.
Biochemistry ; 57(50): 6848-6859, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30457329

ABSTRACT

Human UDP-glucose dehydrogenase (hUGDH) oxidizes UDP-glucose to UDP-glucuronic acid, an essential substrate in the phase II metabolism of drugs. The activity of hUGDH is regulated by the conformation of a buried allosteric switch (T131 loop/α6 helix). Substrate binding induces the allosteric switch to slowly isomerize from an inactive E* conformation to the active E state, which can be observed as enzyme hysteresis. When the feedback inhibitor UDP-xylose binds, the allosteric switch and surrounding residues in the protein core repack, converting the hexamer into an inactive, horseshoe-shaped complex (EΩ). This allosteric transition is facilitated by large cavities and declivities in the protein core that provide the space required to accommodate the alternate packing arrangements. Here, we have used the A104L substitution to fill a cavity in the E state and sterically prevent repacking of the core into the EΩ state. Steady state analysis shows that hUGDHA104L binds UDP-xylose with lower affinity and that the inhibition is no longer cooperative. This means that the allosteric transition to the high-UDP-xylose affinity EΩ state is blocked by the substitution. The crystal structures of hUGDHA104L show that the allosteric switch still adopts the E and E* states, albeit with a more rigid protein core. However, the progress curves of hUGDHA104L do not show hysteresis, which suggests that the E* and E states are now in rapid equilibrium. Our data suggest that hysteresis in native hUGDH originates from the conformational entropy of the E* state protein core.


Subject(s)
Uridine Diphosphate Glucose Dehydrogenase/chemistry , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Allosteric Regulation , Allosteric Site , Amino Acid Substitution , Crystallography, X-Ray , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Substrate Specificity , Uridine Diphosphate Glucose Dehydrogenase/genetics
5.
Nature ; 563(7732): 584-588, 2018 11.
Article in English | MEDLINE | ID: mdl-30420606

ABSTRACT

Protein structures are dynamic and can explore a large conformational landscape1,2. Only some of these structural substates are important for protein function (such as ligand binding, catalysis and regulation)3-5. How evolution shapes the structural ensemble to optimize a specific function is poorly understood3,4. One of the constraints on the evolution of proteins is the stability of the folded 'native' state. Despite this, 44% of the human proteome contains intrinsically disordered peptide segments greater than 30 residues in length6, the majority of which have no known function7-9. Here we show that the entropic force produced by an intrinsically disordered carboxy terminus (ID-tail) shifts the conformational ensemble of human UDP-α-D-glucose-6-dehydrogenase (UGDH) towards a substate with a high affinity for an allosteric inhibitor. The function of the ID-tail does not depend on its sequence or chemical composition. Instead, the affinity enhancement can be accurately predicted based on the length of the intrinsically disordered segment, and is consistent with the entropic force generated by an unstructured peptide attached to the protein surface10-13. Our data show that the unfolded state of the ID-tail rectifies the dynamics and structure of UGDH to favour inhibitor binding. Because this entropic rectifier does not have any sequence or structural constraints, it is an easily acquired adaptation. This model implies that evolution selects for disordered segments to tune the energy landscape of proteins, which may explain the persistence of intrinsic disorder in the proteome.


Subject(s)
Entropy , Evolution, Molecular , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Uridine Diphosphate Glucose Dehydrogenase/chemistry , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Allosteric Regulation/drug effects , Amino Acid Sequence , Humans , Intrinsically Disordered Proteins/antagonists & inhibitors , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Conformation , Protein Folding , Protein Unfolding , Proteome/chemistry , Proteome/metabolism , Substrate Specificity , Uridine Diphosphate Glucose Dehydrogenase/antagonists & inhibitors
6.
Biochemistry ; 56(1): 202-211, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-27966912

ABSTRACT

Human UDP-glucose dehydrogenase (hUGDH) is regulated by an atypical allosteric mechanism in which the feedback inhibitor UDP-xylose (UDP-Xyl) competes with the substrate for the active site. Binding of UDP-Xyl triggers the T131-loop/α6 allosteric switch, which converts the hexameric structure of hUGDH into an inactive, horseshoe-shaped complex (EΩ). This allosteric transition buries residue A136 in the protein core to produce a subunit interface that favors the EΩ structure. Here we use a methionine substitution to prevent the burial of A136 and trap the T131-loop/α6 switch in the active conformation. We show that hUGDHA136M does not exhibit substrate cooperativity, which is strong evidence that the methionine substitution prevents the formation of the low-UDP-Glc-affinity EΩ state. In addition, the inhibitor affinity of hUGDHA136M is reduced 14-fold, which most likely represents the Ki for competitive inhibition in the absence of the allosteric transition to the higher-affinity EΩ state. hUGDH also displays a lag in progress curves, which is caused by a slow, substrate-induced isomerization that activates the enzyme. Stopped-flow analysis shows that hUGDHA136M does not exhibit hysteresis, which suggests that the T131-loop/α6 switch is the source of the slow isomerization. This interpretation is supported by the 2.05 Å resolution crystal structure of hUGDHA136M, which shows that the A136M substitution has stabilized the active conformation of the T131-loop/α6 allosteric switch. This work shows that the T131-loop/α6 allosteric switch couples allostery and hysteresis in hUGDH.


Subject(s)
Allosteric Regulation , Catalytic Domain , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Uridine Diphosphate Xylose/metabolism , Alanine/chemistry , Alanine/genetics , Alanine/metabolism , Binding, Competitive , Biocatalysis , Crystallization , Crystallography, X-Ray , Humans , Kinetics , Methionine/chemistry , Methionine/genetics , Methionine/metabolism , Models, Molecular , Mutation, Missense , Protein Conformation , Protein Multimerization , Substrate Specificity , Time Factors , Uridine Diphosphate Glucose Dehydrogenase/chemistry , Uridine Diphosphate Glucose Dehydrogenase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...