Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Undergrad Neurosci Educ ; 11(1): A119-25, 2012.
Article in English | MEDLINE | ID: mdl-23493834

ABSTRACT

Although powerful bioinformatics tools are available for free on the web and are used by neuroscience professionals on a daily basis, neuroscience students are largely ignorant of them. This Neuroinformatics module weaves together several bioinformatics tools to make a comprehensive unit. This unit encompasses quantifying a phenotype through a Quantitative Trait Locus (QTL) analysis, which links phenotype to loci on chromosomes that likely had an impact on the phenotype. Students then are able to sift through a list of genes in the region(s) of the chromosome identified by the QTL analysis and find a candidate gene that has relatively high expression in the brain region of interest. Once such a candidate gene is identified, students can find out more information about the gene, including the cells/layers in which it is expressed, the sequence of the gene, and an article about the gene. All of the resources employed are available at no cost via the internet. Didactic elements of this instructional module include genetics, neuroanatomy, Quantitative Trait Locus analysis, molecular techniques in neuroscience, and statistics-including multiple regression, ANOVA, and a bootstrap technique. This module was presented at the Faculty for Undergraduate Neuroscience (FUN) 2011 Workshop at Pomona College and can be accessed at http://mdcune.psych.ucla.edu/modules/bioinformatics.

2.
CBE Life Sci Educ ; 9(2): 98-107, 2010.
Article in English | MEDLINE | ID: mdl-20516355

ABSTRACT

This completely computer-based module's purpose is to introduce students to bioinformatics resources. We present an easy-to-adopt module that weaves together several important bioinformatic tools so students can grasp how these tools are used in answering research questions. Students integrate information gathered from websites dealing with anatomy (Mouse Brain Library), quantitative trait locus analysis (WebQTL from GeneNetwork), bioinformatics and gene expression analyses (University of California, Santa Cruz Genome Browser, National Center for Biotechnology Information's Entrez Gene, and the Allen Brain Atlas), and information resources (PubMed). Instructors can use these various websites in concert to teach genetics from the phenotypic level to the molecular level, aspects of neuroanatomy and histology, statistics, quantitative trait locus analysis, and molecular biology (including in situ hybridization and microarray analysis), and to introduce bioinformatic resources. Students use these resources to discover 1) the region(s) of chromosome(s) influencing the phenotypic trait, 2) a list of candidate genes-narrowed by expression data, 3) the in situ pattern of a given gene in the region of interest, 4) the nucleotide sequence of the candidate gene, and 5) articles describing the gene. Teaching materials such as a detailed student/instructor's manual, PowerPoints, sample exams, and links to free Web resources can be found at http://mdcune.psych.ucla.edu/modules/bioinformatics.


Subject(s)
Computational Biology/education , Internet , Neurosciences/education , Public Sector , Teaching/methods , Animals , Genetics , Internet/instrumentation , Mice , Phenotype , Research , Students
3.
BMC Neurosci ; 7: 16, 2006 Feb 17.
Article in English | MEDLINE | ID: mdl-16503985

ABSTRACT

BACKGROUND: The relative growth of the neocortex parallels the emergence of complex cognitive functions across species. To determine the regions of the mammalian genome responsible for natural variations in cortical volume, we conducted a complex trait analysis using 34 strains of recombinant inbred (Rl) strains of mice (BXD), as well as their two parental strains (C57BL/6J and DBA/2J). We measured both neocortical volume and total brain volume in 155 coronally sectioned mouse brains that were Nissl stained and embedded in celloidin. After correction for shrinkage, the measured cortical and noncortical brain volumes were entered into a multiple regression analysis, which removed the effects of body size and age from the measurements. Marker regression and interval mapping were computed using WebQTL. RESULTS: An ANOVA revealed that more than half of the variance of these regressed phenotypes is genetically determined. We then identified the regions of the genome regulating this heritability. We located genomic regions in which a linkage disequilibrium was present using WebQTL as both a mapping engine and genomic database. For neocortex, we found a genome-wide significant quantitative trait locus (QTL) on chromosome 11 (marker D11Mit19), as well as a suggestive QTL on chromosome 16 (marker D16Mit100). In contrast, for noncortex the effect of chromosome 11 was markedly reduced, and a significant QTL appeared on chromosome 19 (D19Mit22). CONCLUSION: This classic pattern of double dissociation argues strongly for different genetic factors regulating relative cortical size, as opposed to brain volume more generally. It is likely, however, that the effects of proximal chromosome 11 extend beyond the neocortex strictly defined. An analysis of single nucleotide polymorphisms in these regions indicated that ciliary neurotrophic factor (Cntf) is quite possibly the gene underlying the noncortical QTL. Evidence for a candidate gene modulating neocortical volume was much weaker, but Otx1 deserves further consideration.


Subject(s)
Brain/anatomy & histology , Genetic Variation/genetics , Mice, Inbred C57BL/genetics , Mice, Inbred DBA/genetics , Quantitative Trait Loci , Animals , Body Size/genetics , Brain/growth & development , Cerebral Cortex/anatomy & histology , Cerebral Cortex/growth & development , Chromosome Mapping , Crosses, Genetic , Female , Linkage Disequilibrium , Male , Mice , Multifactorial Inheritance/genetics , Organ Size/genetics , Phenotype , Polymorphism, Single Nucleotide
4.
Nat Genet ; 36(11): 1133-7, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15514660

ABSTRACT

The goal of the Complex Trait Consortium is to promote the development of resources that can be used to understand, treat and ultimately prevent pervasive human diseases. Existing and proposed mouse resources that are optimized to study the actions of isolated genetic loci on a fixed background are less effective for studying intact polygenic networks and interactions among genes, environments, pathogens and other factors. The Collaborative Cross will provide a common reference panel specifically designed for the integrative analysis of complex systems and will change the way we approach human health and disease.


Subject(s)
Breeding , Health Resources , Mice, Inbred Strains , Animals , Community Networks , Crosses, Genetic , Databases, Genetic , Health Services Research , Humans , Mice , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...