Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed J ; : 100753, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906327

ABSTRACT

BACKGROUND: The high prevalence of desynchronized biological rhythms is becoming a primary public health concern. We assess complex and diverse inter-modulations among multi-frequency rhythms present in blood pressure (BP) and heart rate (HR). SUBJECTS: and Methods: We performed 7-day/24-hour Ambulatory BP Monitoring in 220 (133 women) residents (23 to 74 years) of a rural Japanese town in Kochi Prefecture under everyday life conditions. RESULTS: A symphony of biological clocks contributes to the preservation of a synchronized circadian system. (1) Citizens with an average 12.02-h period had fewer vascular variability disorders than those with shorter (11.37-h) or longer (12.88-h) periods (P<0.05), suggesting that the circasemidian rhythm is potentially important for human health. (2) An appropriate BP-HR coupling promoted healthier circadian profiles than a phase-advanced BP: lower 7-day nighttime SBP (106.8 vs. 112.9 mmHg, P=0.0469), deeper nocturnal SBP dip (20.5% vs. 16.8%, P=0.0101), and less frequent incidence of masked non-dipping (0.53 vs. 0.86, P=0.0378), identifying the night as an important time window. CONCLUSION: Adaptation to irregular schedules in everyday life occurs unconsciously at night, probably initiated from the brain default mode network, in coordination with the biological clock system, including a reinforced about 12-hour clock, as "a biological clock-guided core integration system".

2.
Clin Interv Aging ; 18: 755-769, 2023.
Article in English | MEDLINE | ID: mdl-37193339

ABSTRACT

Background: Blood pressure (BP) variability is involved in the appraisal of threat and safety, and can serve as a potential marker of psychological resilience against stress. The relationship between biological rhythms of BP and resilience was cross-sectionally assessed by 7-day/24-hour chronobiologic screening in a rural Japanese community (Tosa), with focus on the 12-hour component and the "circadian-circasemidian coupling" of systolic (S) BP. Subjects and Methods: Tosa residents (N = 239, 147 women, 23-74 years), free of anti-hypertensive medication, completed 7-day/24-hour ambulatory BP monitoring. The circadian-circasemidian coupling was determined individually by computing the difference between the circadian phase and the circasemidian morning-phase of SBP. Participants were classified into three groups: those with a short coupling interval of about 4.5 hours (Group A), those with an intermediate coupling interval of about 6.0 hours (Group B), and those with a long coupling interval of about 8.0 hours (Group C). Results: Residents of Group B who showed optimal circadian-circasemidian coordination had less pronounced morning and evening SBP surges, as compared to residents of Group A (10.82 vs 14.29 mmHg, P < 0.0001) and Group C (11.86 vs 15.21 mmHg, P < 0.0001), respectively. The incidence of morning or evening SBP surge was less in Group B than in Group A (P < 0.0001) or Group C (P < 0.0001). Group B residents showed highest measures of wellbeing and psychological resilience, assessed by good relation with friends (P < 0.05), life satisfaction (P < 0.05), and subjective happiness (P < 0.05). A disturbed circadian-circasemidian coupling was associated with elevated BP, dyslipidemia, arteriosclerosis and a depressive mood. Conclusion: The circadian-circasemidian coupling of SBP could serve as a new biomarker in clinical practice to guide precision medicine interventions aimed at achieving properly timed rhythms, and thereby resilience and wellbeing.


Subject(s)
Blood Pressure , Circadian Rhythm , Monitoring, Physiologic , Resilience, Psychological , Humans , Circadian Rhythm/physiology , Blood Pressure/physiology , Male , Female , Young Adult , Adult , Middle Aged , Aged , Sleep/physiology , Aging/physiology , Time Factors , Normal Distribution , Personal Satisfaction , Happiness , Resilience, Psychological/physiology
3.
Article in English | MEDLINE | ID: mdl-32365467

ABSTRACT

Environmental effects on human physiopathology are revisited herein from a chronobiologic viewpoint, with a focus on the cardiovascular system. Physiological variables undergo recurring changes that are predictable in a statistical, albeit not deterministic way. Biological rhythms cover a broad range of frequencies, which are usually shared by the environment as "co-periodisms". Some of these photic and non-photic periodicities shared by the environment and physiopathology are reviewed herein, together with their possible underlying mechanisms. A plausible cascade of events from the long-period cycles found in the cosmic environment to those affecting the Earth's atmosphere and weather conditions is presented, which may shed light on how they may shape the cycles characterizing human health. Maps of important cycles shared between the environment and physiopathology are being catalogued in an atlas of chronomes with the goal of distinguishing between strong and weak associations and providing an estimate of the lag that can be anticipated before observing physiological changes.


Subject(s)
Cardiovascular System , Environmental Health , Periodicity , Climate , Humans , Weather
4.
Am J Physiol Heart Circ Physiol ; 305(3): H279-94, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23709604

ABSTRACT

Chronobiology is the study of biological rhythms. Chronomics investigates interactions with environmental cycles in a genetically coded autoresonance of the biosphere with wrangling space and terrestrial weather. Analytical global and local methods applied to human blood pressure records of around-the-clock measurements covering decades detect physiological-physical interactions, a small yet measurable response to solar and terrestrial magnetism. The chronobiological and chronomic interpretation of ambulatory blood pressure monitoring (C-ABPM) records in the light of time-specified reference values derived from healthy peers matched by sex and age identify vascular variability anomalies (VVAs) for an assessment of cardio-, cerebro-, and renovascular disease risk. Even within the conventionally accepted normal range, VVAs have been associated with a statistically significant increase in risk. Long-term C-ABPM records help to "know ourselves," serving for relief of psychological and other strain once transient VVAs are linked to the source of a load, prompting adjustment of one's lifestyle for strain reduction. Persistent circadian VVAs can be treated, sometimes by no more than a change in timing of the daily administration of antihypertensive medication. Circadian VVA assessment is an emergency worldwide, prompted in the United States by 1,000 deaths per day every day from problems related to blood pressure. While some heads of state met under United Nation and World Health Organization sponsorship to declare that noncommunicable diseases are a slow-motion disaster, a resolution has been drafted to propose C-ABPM as an added tool complementing purely physical environmental monitoring to contribute also to the understanding of social and natural as well as personal cataclysms.


Subject(s)
Blood Pressure Monitoring, Ambulatory , Blood Pressure , Circadian Rhythm , Hypertension/diagnosis , Antihypertensive Agents/administration & dosage , Blood Pressure/drug effects , Drug Chronotherapy , Humans , Hypertension/drug therapy , Hypertension/epidemiology , Hypertension/physiopathology , Magnetics , Predictive Value of Tests , Risk Factors , Risk Reduction Behavior , Solar Activity , Time Factors , Treatment Outcome , Weather
5.
Glob Adv Health Med ; 1(2): 66-123, 2012 May.
Article in English | MEDLINE | ID: mdl-23710422

ABSTRACT

To detect vascular variability anomalies (VVAs), a blood pressure and heart rate profile around the clock for at least 7 days is a start. As a minimum, measurement every 60 or preferably 30 minutes for a week is needed, to be continued if abnormality is found, to assess the about 24-hour (circadian) variability that exists in all individuals. As a first dividend, one then also obtains a glimpse of 2 of the very many longer-than-circadian periodicities, the biological half-week and week. Certainly if we can have sensors and computer chips in our cars that continuously monitor the pressure over a tire's life, we should be able to do the same job for ourselves for diagnostic and therapeutic decisions. Healthcare today emphasizes wellness with recommendations for exercise and a proper diet, yet these evaluations may not be adequate. BP may be measured at a visit to the doctor or before an exercise session, along with measuring body weight and performing a physical exam. The seeds of disease are planted long before they are visible, and what appears to be normal from a conventional point of view may in fact actually be abnormal. Hidden alterations of physiological function, masked by the body's remarkable adaptive capabilities, may become visible through a new diagnostic and therapeutic realm-chronobiology-that reveals hitherto unseen abnormalities. The tools of chronobiology may yield additional dividends, such as the detection of physiological "loads" related to stress and stress relief and the undesirable effcts of space weather upon personal events such as sudden cardiac death, societal events like terrorism and war, and natural disasters. Chronobiologi cally interpreted automatic ambulatory BP and heart rate (HR) monitoring (C-ABPM) may detect the antecedents of these types of events. C-ABPM is of interest in preventive cardiology, since it reveals new diagnoses as vascular variability anomalies (VVAs) and renders previous conventional diagnoses more reliable, such as that of an elevated BP. These VVAs include MESOR (midline-estimating statistic of rhythm)-hypertension, an elevation of the MESOR, which is diagnosed, like all other VVAs, only after I or preferably several replications of 7-day around-the-clock BP monitoring with available, affordable, and unobtrusive instrumentation. The recommendation for continuous C-ABPM recognizes several principles that constitute inseparably intertwined contributors to severe cardio-, cerebro- and renovascular diease. C-ABPM gauges wear and tear of genetics, physical loads, and in particular mental stress placed upon individuals from "womb to tomb" by daily life, including weather in extraterrestrial space as well as that on earth, as a continuous surveillance paradigm preventing us from flying blind to a change from less than 5% to near 100% in the risk of a stroke within 6 years.

SELECTION OF CITATIONS
SEARCH DETAIL
...