Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Mol Ther Methods Clin Dev ; 32(2): 101253, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38764780

ABSTRACT

CRISPR-Cas9 and novel cas fusion proteins leveraging specific DNA targeting ability combined with deaminases or reverse transcriptases have revolutionized genome editing. However, their efficacy heavily relies upon protein variants, targeting single guide RNAs, and surrounding DNA sequence context within the targeted loci. This necessitates the need for efficient and rapid screening methods to evaluate these editing reagents and designs. Existing plasmid-based reporters lack flexibility, being fixed to specific DNA sequences, hindering direct comparisons between various editing approaches. To address this, we developed the versatile genome editing application reporter (V-GEAR) system. V-GEAR comprises genes detectable after desired editing via base editing, prime editing, or homology-directed repair within relevant genomic contexts. It employs a detectable synthetic cell surface protein (RQR8) followed by a customizable target sequence resembling genomic regions of interest. These genes allow for reliable identification of corrective editing and cell enrichment. We validated the V-GEAR system with base editors, prime editors, and Cas9-mediated homology-directed repair. Furthermore, the V-GEAR system offers versatility by allowing transient screening or stable integration at the AAVS1 safe harbor loci, rapidly achieved through immunomagnetic isolation. This innovative system enables direct comparisons among editing technologies, accelerating the development and testing of genome editing approaches.

2.
bioRxiv ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38712248

ABSTRACT

Enzymopathy disorders are the result of missing or defective enzymes. Amongst these enzymopathies, mucopolysaccharidosis type I, is a rare genetic lysosomal storage disorder caused by mutations in the gene encoding alpha-L-iduronidase (IDUA), ultimately causes toxic build-up of glycosaminoglycans (GAGs). There is currently no cure and standard treatments provide insufficient relief to the skeletal structure and central nervous system (CNS). Human memory T cells (Tm) migrate throughout the body's tissues and can persist for years, making them an attractive approach for cellular-based, systemic enzyme replacement therapy. Here, we tested genetically engineered, IDUA-expressing Tm as a cellular therapy in an immunodeficient mouse model of MPS I. Our results demonstrate that a single dose of engineered Tm leads to detectable IDUA enzyme levels in the blood for up to 22 weeks and reduced urinary GAG excretion. Furthermore, engineered Tm take up residence in nearly all tested tissues, producing IDUA and leading to metabolic correction of GAG levels in the heart, lung, liver, spleen, kidney, bone marrow, and the CNS. Our study indicates that genetically engineered Tm holds great promise as a platform for cellular-based enzyme replacement therapy for the treatment of mucopolysaccharidosis type I and potentially many other enzymopathies and protein deficiencies.

4.
Mol Ther ; 32(6): 1817-1834, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38627969

ABSTRACT

Cellular therapies for the treatment of human diseases, such as chimeric antigen receptor (CAR) T and natural killer (NK) cells have shown remarkable clinical efficacy in treating hematological malignancies; however, current methods mainly utilize viral vectors that are limited by their cargo size capacities, high cost, and long timelines for production of clinical reagent. Delivery of genetic cargo via DNA transposon engineering is a more timely and cost-effective approach, yet has been held back by less efficient integration rates. Here, we report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieves high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. Our proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improves survival in a Burkitt lymphoma xenograft model in vivo. Overall, TcB-M is a versatile, safe, efficient and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition.


Subject(s)
Burkitt Lymphoma , Genetic Vectors , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Transposases , Humans , Transposases/genetics , Transposases/metabolism , Animals , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Mice , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Burkitt Lymphoma/therapy , Burkitt Lymphoma/genetics , Xenograft Model Antitumor Assays , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Cell Line, Tumor , DNA Transposable Elements , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transgenes
5.
bioRxiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496503

ABSTRACT

Natural killer (NK) cells' unique ability to kill transformed cells expressing stress ligands or lacking major histocompatibility complexes (MHC) has prompted their development for immunotherapy. However, NK cells have demonstrated only moderate responses against cancer in clinical trials and likely require advanced genome engineering to reach their full potential as a cancer therapeutic. Multiplex genome editing with CRISPR/Cas9 base editors (BE) has been used to enhance T cell function and has already entered clinical trials but has not been reported in human NK cells. Here, we report the first application of BE in primary NK cells to achieve both loss-of-function and gain-of-function mutations. We observed highly efficient single and multiplex base editing, resulting in significantly enhanced NK cell function. Next, we combined multiplex BE with non-viral TcBuster transposon-based integration to generate IL-15 armored CD19 CAR-NK cells with significantly improved functionality in a highly suppressive model of Burkitt's lymphoma both in vitro and in vivo. The use of concomitant non-viral transposon engineering with multiplex base editing thus represents a highly versatile and efficient platform to generate CAR-NK products for cell-based immunotherapy and affords the flexibility to tailor multiple gene edits to maximize the effectiveness of the therapy for the cancer type being treated.

6.
Hypertension ; 81(6): 1296-1307, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38545789

ABSTRACT

BACKGROUND: A fructose high-salt (FHS) diet increases systolic blood pressure and Ang II (angiotensin II)-stimulated proximal tubule (PT) superoxide (O2-) production. These increases are prevented by scavenging O2- or an Ang II type 1 receptor antagonist. SGLT4 (sodium glucose-linked cotransporters 4) and SGLT5 are implicated in PT fructose reabsorption, but their roles in fructose-induced hypertension are unclear. We hypothesized that PT fructose reabsorption by SGLT5 initiates a genetic program enhancing Ang II-stimulated oxidative stress in males and females, thereby causing fructose-induced salt-sensitive hypertension. METHODS: We measured systolic blood pressure in male and female Sprague-Dawley (wild type [WT]), SGLT4 knockout (-/-), and SGLT5-/- rats. Then, we measured basal and Ang II-stimulated (37 nmol/L) O2- production by PTs and conducted gene coexpression network analysis. RESULTS: In male WT and female WT rats, FHS increased systolic blood pressure by 15±3 (n=7; P<0.0027) and 17±4 mm Hg (n=9; P<0.0037), respectively. Male and female SGLT4-/- had similar increases. Systolic blood pressure was unchanged by FHS in male and female SGLT5-/-. In male WT and female WT fed FHS, Ang II stimulated O2- production by 14±5 (n=6; P<0.0493) and 8±3 relative light units/µg protein/s (n=7; P<0.0218), respectively. The responses of SGTL4-/- were similar. Ang II did not stimulate O2- production in tubules from SGLT5-/-. Five gene coexpression modules were correlated with FHS. These correlations were completely blunted in SGLT5-/- and partially blunted by chronically scavenging O2- with tempol. CONCLUSIONS: SGLT5-mediated PT fructose reabsorption is required for FHS to augment Ang II-stimulated proximal nephron O2- production, and increases in PT oxidative stress likely contribute to FHS-induced hypertension.


Subject(s)
Blood Pressure , Fructose , Hypertension , Kidney Tubules, Proximal , Oxidative Stress , Rats, Sprague-Dawley , Animals , Fructose/pharmacology , Oxidative Stress/drug effects , Male , Female , Rats , Hypertension/metabolism , Hypertension/genetics , Hypertension/chemically induced , Hypertension/physiopathology , Blood Pressure/drug effects , Blood Pressure/physiology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/drug effects , Sodium-Glucose Transport Proteins/genetics , Sodium-Glucose Transport Proteins/metabolism , Sodium Chloride, Dietary/adverse effects , Angiotensin II , Disease Models, Animal
7.
Am J Physiol Renal Physiol ; 326(2): F249-F256, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38059297

ABSTRACT

Angiotensin II (ANG II) increases proximal tubule superoxide (O2-) production more in rats fed a 20% fructose normal-salt diet compared with rats fed a 20% glucose normal-salt diet. A 20% fructose high-salt diet (FHS) increases systolic blood pressure (SBP), whereas a 20% glucose high-salt diet (GHS) does not. However, it is unclear whether FHS enhances ANG II-induced oxidative stress in proximal tubules and whether this contributes to increases in blood pressure in this model. We hypothesized that FHS augments the ability of ANG II to stimulate O2- production by proximal tubules, and this contributes to fructose-induced salt-sensitive hypertension. We measured SBP in male Sprague-Dawley rats fed FHS and GHS and determined the effects of 3 mM tempol and 50 mg/kg losartan for 7 days. We then measured basal and ANG II-stimulated (3.7 × 10-8 M) O2- production by proximal tubule suspensions and the role of protein kinase C. FHS increased SBP by 27 ± 5 mmHg (n = 6, P < 0.006) but GHS did not. Rats fed FHS + tempol and GHS + tempol showed no significant increases in SBP. ANG II increased O2- production by 11 ± 1 relative light units/µg protein/s in proximal tubules from FHS-fed rats (n = 6, P < 0.05) but not in tubules from rats fed GHS. ANG II did not significantly stimulate O2- production by proximal tubules from rats fed FHS + tempol or FHS + losartan. The protein kinase C inhibitor Gö6976 blunted ANG II-stimulated O2- production. In conclusion, FHS enhances the sensitivity of proximal tubule O2- production to ANG II, and this contributes to fructose-induced salt-sensitive hypertension.NEW & NOTEWORTHY A diet containing amounts of fructose consumed by 17 million Americans causes salt-sensitive hypertension. Oxidative stress is an initiating cause of this model of fructose-induced salt-sensitive hypertension increasing blood pressure. This salt-sensitive hypertension is prevented by losartan and thus is angiotensin II (ANG II) dependent. Fructose-induced salt-sensitive hypertension depends on ANG II stimulating oxidative stress in the proximal tubule. A fructose/high-salt diet augments the ability of ANG II to stimulate proximal tubule O2- via protein kinase C.


Subject(s)
Angiotensin II , Cyclic N-Oxides , Hypertension , Spin Labels , Humans , Rats , Male , Animals , Rats, Sprague-Dawley , Angiotensin II/pharmacology , Angiotensin II/metabolism , Superoxides/metabolism , Losartan/pharmacology , Fructose/pharmacology , Hypertension/chemically induced , Hypertension/metabolism , Sodium Chloride/metabolism , Nephrons/metabolism , Sodium Chloride, Dietary/metabolism , Blood Pressure , Protein Kinase C/metabolism , Glucose/pharmacology
8.
Eur J Appl Physiol ; 124(5): 1523-1534, 2024 May.
Article in English | MEDLINE | ID: mdl-38150009

ABSTRACT

PURPOSE: Cold-induced vasodilation (CIVD) is an oscillatory rise in blood flow to glabrous skin that occurs in cold-exposed extremities. Dietary flavanols increase bioavailable nitric oxide, a proposed mediator of CIVD through active vasodilation and/or withdrawal of sympathetic vascular smooth muscle tone. However, no studies have examined the effects of flavanol intake on extremity skin perfusion during cold exposure. We tested the hypothesis that acute and 8-day flavanol supplementation would augment CIVD during single-digit cold water immersion (CWI). METHODS: Eleven healthy adults (24 ± 6 years; 10 M/1F) ingested cocoa flavanols (900 mg/day) or caffeine- and theobromine-matched placebo for 8 days in a double-blind, randomized, crossover design. On Days 1 and 8, CIVD was assessed 2 h post-treatment. Subjects immersed their 3rd finger in warm water (42 °C) for 15 min before CWI (4 °C) for 30 min, during which nail bed and finger pad skin temperature were measured. RESULTS: Flavanol ingestion had no effect on CIVD frequency (Day 1, Flavanol: 3 ± 2 vs. Placebo: 3 ± 2; Day 8, Flavanol: 3 ± 2 vs. Placebo: 3 ± 1) or amplitude (Day 1, Flavanol: 4.3 ± 1.7 vs. Placebo: 4.9 ± 2.6 °C; Day 8, Flavanol: 3.9 ± 1.9 vs. Placebo: 3.9 ± 2.0 °C) in the finger pad following acute or 8-day supplementation (P > 0.05). Furthermore, average, nadir, and apex finger pad temperatures during CWI were not different between treatments on Days 1 or 8 of supplementation (P > 0.05). Similarly, no differences in CIVD parameters were observed in the nail bed following supplementation (P > 0.05). CONCLUSION: These data suggest that cocoa flavanol ingestion does not alter finger CIVD. Clinical Trial Registration Clinicaltrials.gov Identifier: NCT04359082. April 24, 2020.


Subject(s)
Cold Temperature , Dietary Supplements , Vasodilation , Humans , Male , Female , Vasodilation/drug effects , Vasodilation/physiology , Adult , Double-Blind Method , Young Adult , Cross-Over Studies , Skin Temperature/drug effects , Skin Temperature/physiology , Cacao , Flavonols/pharmacology , Flavonols/administration & dosage , Skin/blood supply , Skin/drug effects , Chocolate
9.
Nat Biomed Eng ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092857

ABSTRACT

The reliance on viral vectors for the production of genetically engineered immune cells for adoptive cellular therapies remains a translational bottleneck. Here we report a method leveraging the DNA repair pathway homology-mediated end joining, as well as optimized reagent composition and delivery, for the Cas9-induced targeted integration of large DNA payloads into primary human T cells with low toxicity and at efficiencies nearing those of viral vectors (targeted knock-in of 1-6.7 kb payloads at rates of up to 70% at multiple targeted genomic loci and with cell viabilities of over 80%). We used the method to produce T cells with an engineered T-cell receptor or a chimaeric antigen receptor and show that the cells maintained low levels of exhaustion markers and excellent capacities for proliferation and cytokine production and that they elicited potent antitumour cytotoxicity in vitro and in mice. The method is readily adaptable to current good manufacturing practices and scale-up processes, and hence may be used as an alternative to viral vectors for the production of genetically engineered T cells for cancer immunotherapies.

10.
RSC Med Chem ; 14(8): 1472-1481, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37593580

ABSTRACT

It is of great importance to develop new strategies to combat antibiotic resistance. Our lab has discovered halogenated phenazine (HP) analogues that are highly active against multidrug-resistant bacterial pathogens. Here, we report the design, synthesis, and study of a new series of nitroarene-based HP prodrugs that leverage intracellular nitroreductase (NTR) enzymes for activation and subsequent release of active HP agents. Our goals of developing HP prodrugs are to (1) mitigate off-target metal chelation (potential toxicity), (2) possess motifs to facilitate intracellular, bacterial-specific HP release, (3) improve water solubility, and (4) prevent undesirable metabolism (e.g., glucuronidation of HP's phenol). Following the synthesis of HP-nitroarene prodrugs bearing a sulfonate ester linker, NTR-promoted release experiments demonstrated prodrug HP-1-N released 70.1% of parent HP-1 after 16 hours (with only 6.8% HP-1 release without NTR). In analogous in vitro experiments, no HP release was observed for control sulfonate ester compounds lacking the critical nitro group. When compared to parent HP compounds, nitroarene prodrugs evaluated during these studies demonstrate similar antibacterial activities in MIC and zone of inhibition assays (against lab strains and clinical isolates). In conclusion, HP-nitroarene prodrugs could provide a future avenue to develop potent agents that target antibiotic resistant bacteria.

11.
Mol Genet Metab ; 138(4): 107539, 2023 04.
Article in English | MEDLINE | ID: mdl-37023503

ABSTRACT

Mucopolysaccharidosis type II (Hunter syndrome, MPS II) is an inherited X-linked recessive disease caused by deficiency of iduronate-2-sulfatase (IDS), resulting in the accumulation of the glycosaminoglycans (GAG) heparan and dermatan sulfates. Mouse models of MPS II have been used in several reports to study disease pathology and to conduct preclinical studies for current and next generation therapies. Here, we report the generation and characterization of an immunodeficient mouse model of MPS II, where CRISPR/Cas9 was employed to knock out a portion of the murine IDS gene on the NOD/SCID/Il2rγ (NSG) immunodeficient background. IDS-/- NSG mice lacked detectable IDS activity in plasma and all analyzed tissues and exhibited elevated levels of GAGs in those same tissues and in the urine. Histopathology revealed vacuolized cells in both the periphery and CNS of NSG-MPS II mice. This model recapitulates skeletal disease manifestations, such as increased zygomatic arch diameter and decreased femur length. Neurocognitive deficits in spatial memory and learning were also observed in the NSG-MPS II model. We anticipate that this new immunodeficient model will be appropriate for preclinical studies involving xenotransplantation of human cell products intended for the treatment of MPS II.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Humans , Animals , Mice , Mucopolysaccharidosis II/therapy , Mice, Inbred NOD , Mice, SCID , Iduronate Sulfatase/genetics , Glycosaminoglycans
12.
J Immunol ; 210(8): 1108-1122, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36881874

ABSTRACT

CMV infection alters NK cell phenotype and function toward a more memory-like immune state. These cells, termed adaptive NK cells, typically express CD57 and NKG2C but lack expression of the FcRγ-chain (gene: FCER1G, FcRγ), PLZF, and SYK. Functionally, adaptive NK cells display enhanced Ab-dependent cellular cytotoxicity (ADCC) and cytokine production. However, the mechanism behind this enhanced function is unknown. To understand what drives enhanced ADCC and cytokine production in adaptive NK cells, we optimized a CRISPR/Cas9 system to ablate genes from primary human NK cells. We ablated genes that encode molecules in the ADCC pathway, such as FcRγ, CD3ζ, SYK, SHP-1, ZAP70, and the transcription factor PLZF, and tested subsequent ADCC and cytokine production. We found that ablating the FcRγ-chain caused a modest increase in TNF-α production. Ablation of PLZF did not enhance ADCC or cytokine production. Importantly, SYK kinase ablation significantly enhanced cytotoxicity, cytokine production, and target cell conjugation, whereas ZAP70 kinase ablation diminished function. Ablating the phosphatase SHP-1 enhanced cytotoxicity but reduced cytokine production. These results indicate that the enhanced cytotoxicity and cytokine production of CMV-induced adaptive NK cells is more likely due to the loss of SYK than the lack of FcRγ or PLZF. We found the lack of SYK expression could improve target cell conjugation through enhanced CD2 expression or limit SHP-1-mediated inhibition of CD16A signaling, leading to enhanced cytotoxicity and cytokine production.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Syk Kinase/genetics , CRISPR-Cas Systems , Killer Cells, Natural , Cytokines , Antibody-Dependent Cell Cytotoxicity
13.
Nat Commun ; 14(1): 528, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36726009

ABSTRACT

T cell receptor (TCR) transgenic mice represent an invaluable tool to study antigen-specific immune responses. In the pre-existing models, a monoclonal TCR is driven by a non-physiologic promoter and randomly integrated into the genome. Here, we create a highly efficient methodology to develop T cell receptor exchange (TRex) mice, in which TCRs, specific to the self/tumor antigen mesothelin (Msln), are integrated into the Trac locus, with concomitant Msln disruption to circumvent T cell tolerance. We show that high affinity TRex thymocytes undergo all sequential stages of maturation, express the exogenous TCR at DN4, require MHC class I for positive selection and undergo negative selection only when both Msln alleles are present. By comparison of TCRs with the same specificity but varying affinity, we show that Trac targeting improves functional sensitivity of a lower affinity TCR and confers resistance to T cell functional loss. By generating P14 TRex mice with the same specificity as the widely used LCMV-P14 TCR transgenic mouse, we demonstrate increased avidity of Trac-targeted TCRs over transgenic TCRs, while preserving physiologic T cell development. Together, our results support that the TRex methodology is an advanced tool to study physiological antigen-specific T cell behavior.


Subject(s)
Receptors, Antigen, T-Cell , Thymocytes , Mice , Animals , Receptors, Antigen, T-Cell/genetics , Mice, Transgenic , Cell Differentiation , Autoantigens
14.
Cytotherapy ; 25(3): 270-276, 2023 03.
Article in English | MEDLINE | ID: mdl-36635153

ABSTRACT

BACKGROUND: Consistent progress has been made to create more efficient and useful CRISPR-Cas9-based molecular toolsfor genomic modification. METHODS: This review focuses on recent articles that have employed base editors (BEs) for both clinical and research purposes. RESULTS: CRISPR-Cas9 BEs are a useful system because of their highefficiency and broad applicability to gene correction and disruption. In addition, base editing has beensuggested as a safer approach than other CRISPR-Cas9-based systems, as it limits double-strand breaksduring multiplex gene knockout and does not require a toxic DNA donor molecule for genetic correction. CONCLUSION: As such, numerous industry and academic groups are currently developing base editing strategies withclinical applications in cancer immunotherapy and gene therapy, which this review will discuss, with a focuson current and future applications of in vivo BE delivery.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , CRISPR-Cas Systems/genetics , Genetic Therapy , DNA
15.
Physiol Rep ; 10(19): e15489, 2022 10.
Article in English | MEDLINE | ID: mdl-36200315

ABSTRACT

Proximal tubule fructose metabolism is key to fructose-induced hypertension, but the roles of sex and stress are unclear. We hypothesized that females are resistant to the salt-sensitive hypertension caused by low amounts of dietary fructose compared to males and that the magnitude of the increase in blood pressure (BP) depends, in part, on amplification of the stress response of renal sympathetic nerves. We measured systolic BP (SBP) in rats fed high salt with either no sugar (HS), 20% glucose (GHS) or 20% fructose (FHS) in the drinking water for 7-8 days. FHS increased SBP in both males (Δ22 ± 9 mmHg; p < 0.046) and females (Δ16 ± 3 mmHg; p < 0.0007), while neither GHS nor HS alone induced changes in SBP in either sex. The FHS-induced increase in SBP as measured by telemetry in the absence of added stress (8 ± 2 mmHg) was significantly lower than that measured by plethysmography (24 ± 5 mmHg) (p < 0.014). However, when BP was measured by telemetry simulating the stress of plethysmography, the increase in SBP was significantly greater (15 ± 3 mmHg) than under low stress (8 ± 1 mmHg) (p < 0.014). Moderate-stress also increased telemetric diastolic (p < 0.006) and mean BP (p < 0.006) compared to low-stress in FHS-fed animals. Norepinephrine excretion was greater in FHS-fed rats than HS-fed animals (Male: 6.4 ± 1.7 vs.1.8 ± 0.4 nmole/kg/day; p < 0.02. Female 54 ± 18 vs. 1.2 ± 0.6; p < 0.02). We conclude that fructose-induced salt-sensitive hypertension is similar in males and females unlike other forms of hypertension, and the increase in blood pressure depends in part on an augmented response of the sympathetic nervous system to stress.


Subject(s)
Drinking Water , Hypertension , Animals , Blood Pressure/physiology , Female , Fructose/adverse effects , Glucose/pharmacology , Hypertension/chemically induced , Hypertension/metabolism , Male , Norepinephrine/pharmacology , Rats , Rats, Sprague-Dawley , Sodium Chloride/pharmacology , Sodium Chloride, Dietary/adverse effects
16.
Temperature (Austin) ; 9(2): 122-157, 2022.
Article in English | MEDLINE | ID: mdl-36106151

ABSTRACT

Habituation is an adaptation seen in many organisms, defined by a reduction in the response to repeated stimuli. Evolutionarily, habituation is thought to benefit the organism by allowing conservation of metabolic resources otherwise spent on sub-lethal provocations including repeated cold exposure. Hypermetabolic and/or insulative adaptations may occur after prolonged and severe cold exposures, resulting in enhanced cold defense mechanisms such as increased thermogenesis and peripheral vasoconstriction, respectively. Habituation occurs prior to these adaptations in response to short duration mild cold exposures, and, perhaps counterintuitively, elicits a reduction in cold defense mechanisms demonstrated through higher skin temperatures, attenuated shivering, and reduced cold sensations. These habituated responses likely serve to preserve peripheral tissue temperature and conserve energy during non-life threatening cold stress. The purpose of this review is to define habituation in general terms, present evidence for the response in non-human species, and provide an up-to-date, critical examination of past studies and the potential physiological mechanisms underlying human cold habituation. Our aim is to stimulate interest in this area of study and promote further experiments to understand this physiological adaptation.

17.
Int J Mol Sci ; 23(17)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36077152

ABSTRACT

Monocytes and their downstream effectors are critical components of the innate immune system. Monocytes are equipped with chemokine receptors, allowing them to migrate to various tissues, where they can differentiate into macrophage and dendritic cell subsets and participate in tissue homeostasis, infection, autoimmune disease, and cancer. Enabling genome engineering in monocytes and their effector cells will facilitate a myriad of applications for basic and translational research. Here, we demonstrate that CRISPR-Cas9 RNPs can be used for efficient gene knockout in primary human monocytes. In addition, we demonstrate that intracellular RNases are likely responsible for poor and heterogenous mRNA expression as incorporation of pan-RNase inhibitor allows efficient genome engineering following mRNA-based delivery of Cas9 and base editor enzymes. Moreover, we demonstrate that CRISPR-Cas9 combined with an rAAV vector DNA donor template mediates site-specific insertion and expression of a transgene in primary human monocytes. Finally, we demonstrate that SIRPa knock-out monocyte-derived macrophages have enhanced activity against cancer cells, highlighting the potential for application in cellular immunotherapies.


Subject(s)
CRISPR-Cas Systems , Ribonucleases , CRISPR-Cas Systems/genetics , Endoribonucleases/genetics , Gene Editing , Gene Knockout Techniques , Genetic Engineering , Humans , Monocytes , RNA, Messenger/genetics , Ribonucleases/genetics
18.
Med ; 3(10): 682-704.e8, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36007524

ABSTRACT

BACKGROUND: Adoptive transfer of tumor-infiltrating lymphocytes (TIL) fails to consistently elicit tumor rejection. Manipulation of intrinsic factors that inhibit T cell effector function and neoantigen recognition may therefore improve TIL therapy outcomes. We previously identified the cytokine-induced SH2 protein (CISH) as a key regulator of T cell functional avidity in mice. Here, we investigate the mechanistic role of CISH in regulating human T cell effector function in solid tumors and demonstrate that CRISPR/Cas9 disruption of CISH enhances TIL neoantigen recognition and response to checkpoint blockade. METHODS: Single-cell gene expression profiling was used to identify a negative correlation between high CISH expression and TIL activation in patient-derived TIL. A GMP-compliant CRISPR/Cas9 gene editing process was developed to assess the impact of CISH disruption on the molecular and functional phenotype of human peripheral blood T cells and TIL. Tumor-specific T cells with disrupted Cish function were adoptively transferred into tumor-bearing mice and evaluated for efficacy with or without checkpoint blockade. FINDINGS: CISH expression was associated with T cell dysfunction. CISH deletion using CRISPR/Cas9 resulted in hyper-activation and improved functional avidity against tumor-derived neoantigens without perturbing T cell maturation. Cish knockout resulted in increased susceptibility to checkpoint blockade in vivo. CONCLUSIONS: CISH negatively regulates human T cell effector function, and its genetic disruption offers a novel avenue to improve the therapeutic efficacy of adoptive TIL therapy. FUNDING: This study was funded by Intima Bioscience, U.S. and in part through the Intramural program CCR at the National Cancer Institute.


Subject(s)
Lymphocytes, Tumor-Infiltrating , T-Lymphocytes , Adoptive Transfer , Animals , Cytokines/metabolism , Humans , Immunotherapy, Adoptive/methods , Mice
19.
CRISPR J ; 5(4): 517-535, 2022 08.
Article in English | MEDLINE | ID: mdl-35972367

ABSTRACT

Advances in genome and tissue engineering have spurred significant progress and opportunity for innovation in cancer modeling. Human induced pluripotent stem cells (iPSCs) are an established and powerful tool to study cellular processes in the context of disease-specific genetic backgrounds; however, their application to cancer has been limited by the resistance of many transformed cells to undergo successful reprogramming. Here, we review the status of human iPSC modeling of solid tumors in the context of genetic engineering, including how base and prime editing can be incorporated into "bottom-up" cancer modeling, a term we coined for iPSC-based cancer models using genetic engineering to induce transformation. This approach circumvents the need to reprogram cancer cells while allowing for dissection of the genetic mechanisms underlying transformation, progression, and metastasis with a high degree of precision and control. We also discuss the strengths and limitations of respective engineering approaches and outline experimental considerations for establishing future models.


Subject(s)
Induced Pluripotent Stem Cells , Neoplasms , CRISPR-Cas Systems/genetics , Gene Editing , Humans , Neoplasms/genetics , Neoplasms/therapy
20.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955545

ABSTRACT

Fanconi anemia (FA) is a rare genetic disease in which genes essential for DNA repair are mutated. Both the interstrand crosslink (ICL) and double-strand break (DSB) repair pathways are disrupted in FA, leading to patient bone marrow failure (BMF) and cancer predisposition. The only curative therapy for the hematological manifestations of FA is an allogeneic hematopoietic cell transplant (HCT); however, many (>70%) patients lack a suitable human leukocyte antigen (HLA)-matched donor, often resulting in increased rates of graft-versus-host disease (GvHD) and, potentially, the exacerbation of cancer risk. Successful engraftment of gene-corrected autologous hematopoietic stem cells (HSC) circumvents the need for an allogeneic HCT and has been achieved in other genetic diseases using targeted nucleases to induce site specific DSBs and the correction of mutated genes through homology-directed repair (HDR). However, this process is extremely inefficient in FA cells, as they are inherently deficient in DNA repair. Here, we demonstrate the correction of FANCA mutations in primary patient cells using 'digital' genome editing with the cytosine and adenine base editors (BEs). These Cas9-based tools allow for C:G > T:A or A:T > C:G base transitions without the induction of a toxic DSB or the need for a DNA donor molecule. These genetic corrections or conservative codon substitution strategies lead to phenotypic rescue as illustrated by a resistance to the alkylating crosslinking agent Mitomycin C (MMC). Further, FANCA protein expression was restored, and an intact FA pathway was demonstrated by downstream FANCD2 monoubiquitination induction. This BE digital correction strategy will enable the use of gene-corrected FA patient hematopoietic stem and progenitor cells (HSPCs) for autologous HCT, obviating the risks associated with allogeneic HCT and DSB induction during autologous HSC gene therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...