Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 134(12): 3963-3981, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34455452

ABSTRACT

KEY MESSAGE: Fine mapping of barley 6H pericentromeric region identified FHB QTL with opposite effects, and high grain protein content was associated with increased FHB severity. Resistance to Fusarium head blight (FHB), kernel discoloration (KD), deoxynivalenol (DON) accumulation and grain protein content (GPC) are important traits for breeding malting barley varieties. Previous work mapped a Chevron-derived FHB QTL to the pericentromeric region of 6H, coinciding with QTL for KD resistance and GPC. The Chevron allele reduced FHB and KD, but unfavorably increased GPC. To determine whether the correlations are caused by linkage or pleiotropy, a fine mapping approach was used to dissect the QTL underlying these quality and disease traits. Two populations, referred to as Gen10 and Gen10/Lacey, derived from a recombinant near-isogenic line (rNIL) were developed. Recombinants were phenotyped for FHB, KD, DON, GPC and other agronomic traits. Three FHB, two DON and two KD QTLs were identified. One of the three FHB QTLs, one DON QTL and one KD QTL were coincident with the GPC QTL, which contains the Hv-NAM1 locus affecting grain protein accumulation. The Chevron allele at the GPC QTL increased GPC and FHB and decreased DON and KD. The other two FHB QTL and the other DON and KD QTL were identified in the regions flanking the Hv-NAM1 locus, and the Chevron alleles decreased FHB, DON and KD. Our results suggested that the QTL associated with FHB, KD, DON and GPC in the pericentromeric region of 6H was controlled by both pleiotropy and tightly linked loci. The rNILs identified in this study with low FHB severity and moderate GPC may be used for breeding malting barley cultivars.


Subject(s)
Disease Resistance/genetics , Fusarium/pathogenicity , Grain Proteins/analysis , Hordeum/genetics , Plant Diseases/genetics , Alleles , Chromosome Mapping , Chromosomes, Plant/genetics , Genetic Pleiotropy , Genotype , Phenotype , Plant Diseases/microbiology , Quantitative Trait Loci
2.
Theor Appl Genet ; 126(3): 619-36, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23124391

ABSTRACT

Fusarium head blight (FHB) is a threat to barley (Hordeum vulgare L.) production in many parts of the world. A number of barley accessions with partial resistance have been reported and used in mapping experiments to identify quantitative trait loci (QTL) associated with FHB resistance. Here, we present a set of barley germplasm that exhibits FHB resistance identified through screening a global collection of 23,255 wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) accessions. Seventy-eight accessions were classified as resistant or moderately resistant. The collection of FHB resistant accessions consists of 5, 27, 46 of winter, wild and spring barley, respectively. The population structure and genetic relationships of the germplasm were investigated with 1,727 Diversity Array Technology (DArT) markers. Multiple clustering analyses suggest the presence of four subpopulations. Within cultivated barley, substructure is largely centered on spike morphology and growth habit. Analysis of molecular variance indicated highly significant genetic variance among clusters and within clusters, suggesting that the FHB resistant sources have broad genetic diversity. The haplotype diversity was characterized with DArT markers associated with the four FHB QTLs on chromosome 2H bin8, 10 and 13 and 6H bin7. In general, the wild barley accessions had distinct haplotypes from those of cultivated barley. The haplotype of the resistant source Chevron was the most prevalent in all four QTL regions, followed by those of the resistant sources Fredrickson and CIho4196. These resistant QTL haplotypes were rare in the susceptible cultivars and accessions grown in the upper Midwest USA. Some two- and six-rowed accessions were identified with high FHB resistance, but contained distinct haplotypes at FHB QTLs from known resistance sources. These germplasm warrant further genetic studies and possible incorporation into barley breeding programs.


Subject(s)
Genetic Variation , Haplotypes , Hordeum/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Alleles , Breeding , Chromosome Mapping , Chromosomes, Plant/genetics , Fusarium , Genetic Markers , Hordeum/microbiology , Multigene Family , Plant Diseases/microbiology , Plant Immunity/genetics
3.
Genetics ; 172(2): 1263-75, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16322504

ABSTRACT

The patatin multicopy gene family encodes the major storage protein in potato tubers and is organized as a single cluster in the potato genome. We sequenced a 154-kb bacterial artificial chromosome (BAC) clone containing a portion of the patatin gene cluster. Two putatively functional patatin genes were found in this BAC. These two genes are embedded within arrays of patatin pseudogenes. Using a chromatin immunoprecipitation method we demonstrate that the dramatic increase of patatin gene expression during the transition from stolons to tubers coincides with an increase of histone H4 lysine acetylation. We used 3' rapid amplification of cDNA ends to profile expression of different patatin genes during tuber development. The profiling results revealed differential expression patterns of specific patatin gene groups throughout six different stages of tuber development. One group of patatin gene transcripts, designated patatin gene group A, was found to be the most abundant group during all stages of tuber development. Other patatin gene groups, with a 48-bp insertion in the 3'-untranslated region, are not expressed in stolons but display a gradual increase in expression level following the onset of tuberization. These results demonstrate that the patatin genes exhibit alterations in chromatin state and differential transcriptional regulation during the developmental transition from stolons into tubers, in which there is an increased demand for protein storage.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Gene Expression Regulation, Plant , Multigene Family , Plant Proteins/genetics , Solanum tuberosum/growth & development , Solanum tuberosum/genetics , 3' Untranslated Regions , Acetylation , Amino Acid Sequence , Carboxylic Ester Hydrolases/chemistry , Chromosome Mapping , Chromosomes, Artificial, Bacterial , Gene Expression Profiling , Histones/metabolism , Molecular Sequence Data , Plant Proteins/chemistry , RNA, Messenger/metabolism , Sequence Alignment , Solanum tuberosum/chemistry , Zea mays/genetics , Zein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...