Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 218: 106223, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32174445

ABSTRACT

The mill tailings from uranium mines constitute very low-level, long-lived, radioactive process waste. Their long-term management therefore requires a good understanding of the geochemical mechanisms regulating the mobility of residual uranium and radium-226. This article presents the results of the detailed characterization of the tailings resulting from the dynamic leaching processes used on the ore of the La Crouzille mining division and stored at the Bellezane site (Haute-Vienne, France) for over 25 years. A multi-scalar and multidisciplinary approach was developed based on a study of the site's history, on the chemical, radiological and mineralogical characterizations of the solid fraction of the tailings, and on porewater analyses. These were complemented by thermodynamic equilibrium models to predict the long-term mobility of U and 226Ra. Weakly acidic (pH = 6.35) and oxidizing (Eh = 138 mV/SHE) porewaters had a sulfated-magnesian facies ([SO4]tot = 43 mmol/L; [Mg]tot = 33 mmol/L) with an accessory calcium bicarbonate component (TIC = 25 mmol/L; [Ca]tot = 13 mmol/L) and dissolved concentrations of uranium and 226Ra of 12 × 10-6 mol/L and 0.58 Bq/L respectively. Ultra-filtration at 10 kDa indicated the absence of colloidal phases. The characterization of the tailings confirmed their homogeneity from a radiological, chemical and mineralogical point of view. The residual U and 226Ra concentrations measured in the solid were 160 ppm and 25 Bq/g respectively, in accordance with the initial ore grades and mill yields, or more than 99% of the total stock. In terms of chemical and mineralogical composition, the tailings were mainly composed of minerals from the granitic ore (quartz, potassium feldspar, plagioclases and micas) in association with their weathering products (smectite and ferric oxyhydroxides) and with neo-formed minerals following rapid diagenesis after neutralization of the tailings before their emplacement (gypsum and barite). All these minerals are effective traps for the retention of U and 226Ra. The uranium is distributed partly in micrometer scale uraninite and coffinite refractory phases embedded in grains of quartz, and partly sorbed to smectite and ferric oxyhydroxides. The 226Ra on the other hand is trapped mainly within the barite. The aqueous concentrations of U and 226Ra could be described using a thermodynamic approach so that their long-term mobility can subsequently be assessed by modeling. The paragenesis of the tailings could be seen to be stable over time with the exception of neo-formed gypsum and calcite, which will gradually dissolve. The presence of retention traps offering surplus capacity, i.e. smectite, ferric oxyhydroxides and barite, will maintain the U and the 226Ra at very low aqueous concentrations, even under oxidizing conditions. Moreover, the low permeability of the mill tailings leads, in the case of 226Ra, to behavior dictated only by the radioactive decay.


Subject(s)
Radiation Monitoring , Soil Pollutants, Radioactive , Uranium , France , Mining
2.
Chemosphere ; 202: 651-660, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29602097

ABSTRACT

Peat is a complex material with several organic constituents that contribute to its high capacity to retain metals. In the context of uranium mining, peat can accumulate high concentrations of uranium and its decay products such as radium. Hence, interaction with peat appears to be a key factor in the understanding of the geochemical mechanisms controlling the fate of these products. This study aims to determine the sorption properties of two trace elements, U(VI) and 226Ra, on natural organic matter from peat. The presented method was applied to both natural peat samples originating from a mining context, with various contents of organic matter (from 40 to 70%) and detrital loads, and wetland peat with a more than 98% composition of organic matter. In the present study, considering peat material as a sorbent, its reactivity towards metals and other contaminants can be described as that of an ion-exchanger. A relatively simple model of ion-exchange based on the sorption properties of carboxylic sites has been applied with success to describe the sorption of uranium and radium. In the general overview of the different mechanisms able to control the mobility of these radionuclides in a uranium mining context, organic matter is likely one of the main contributors to radionuclide scavenging even under oxic conditions.


Subject(s)
Radium/chemistry , Soil/chemistry , Uranium/chemistry , Water Pollutants, Radioactive/chemistry , Mining , Radium/analysis , Uranium/analysis , Water Pollutants, Radioactive/analysis , Wetlands
3.
Environ Sci Technol ; 46(5): 2633-41, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22316059

ABSTRACT

The diffusion of cesium was studied in an unsaturated core of Callovo-Oxfordian claystone, which is a potential host rock for retrievable disposal of high-level radioactive wastes. In-diffusion laboratory experiments were performed on rock samples with water saturation degrees ranging from 81% to 100%. The analysis of both cesium concentration monitoring in the source reservoir and post-mortem cesium rock concentration profile of the samples was carried out using a chemical-transport code where the sorption of cesium was described by a multisite ion-exchange model. The results showed that cesium exhibited a clear trend related to the saturation degree of the sample. The more dehydrated the rock sample, the slower the decrease of cesium concentration, and the thinner the penetration depth of cesium was. The effective diffusion coefficient (De) for cesium decreased from 18.5 × 10(-11) m(2) s(-1) at full-saturation to 0.3 × 10(-11) m(2) s(-1) for the more dehydrated sample. This decrease is almost 1 order of magnitude higher than that for tritiated water (HTO), although a similar behavior could have been expected, since cesium is known to diffuse in the same parts of the pore space as HTO in fully saturated claystones.


Subject(s)
Aluminum Silicates/chemistry , Cesium/analysis , Geologic Sediments/chemistry , Soil Pollutants, Radioactive/analysis , Adsorption , Cesium Radioisotopes , Clay , Diffusion , France , Ion Exchange , Kinetics , Minerals/chemistry , Porosity , Time Factors
4.
J Contam Hydrol ; 125(1-4): 102-12, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21684032

ABSTRACT

Heat generated by high level radioactive wastes could alter the performance of a clay repository. It was intended to investigate the effect of such a thermal period on the diffusive properties of Callovo-Oxfordian claystones. Thus, through-diffusion experiments with HTO, Cl-36, Na-22 and Cs-137 were performed before, during and after stages of heating at 80°C that lasted for up to one year. A special attention was paid to limit the occurrence of any chemical disturbance. Therefore (i) the temperature was raised to 80°C, then progressively brought back to 21°C, thanks to three intermediate temperature stages, and (ii) specific synthetic solutions were used for each temperature, chemistry of which being close to the equilibrium state, especially with respect to the carbonate and sulphate minerals. It was found that experiments carried out at 80°C showed a clear increase of the effective diffusion coefficient values for the four tracers with respect to those obtained at 21°C (by a factor of 3 for HTO and Cl-36, 5 for Na-22 and 2 for Cs-137). On the other hand, the porosity and rock capacity values did not exhibit any significant discrepancy between 21°C and 80°C, indicating no observable damage of both the pore conducing network and the sorption properties of clay minerals. The Stokes-Einstein relationship, based on the temperature dependency of the viscosity of bulk water, could be used to describe the temperature dependence of the diffusion of HTO and Cl-36 but failed to describe the diffusive evolution of the two sorbing cations, Na-22 and Cs-137. Furthermore, experiments performed after the thermal period led to diffusive properties well matching those obtained before heating. All these results suggest that at the lab scale the heating of rock samples would not alter the claystone containment properties.


Subject(s)
Geologic Sediments/chemistry , Radioactive Waste/analysis , Soil Pollutants, Radioactive/chemistry , Adsorption , Aluminum Silicates/chemistry , Cesium Radioisotopes/chemistry , Chlorine/chemistry , Clay , Diffusion , France , Hot Temperature , Permeability , Radioisotopes/chemistry , Sodium/chemistry , Soil Pollutants, Radioactive/analysis , Water/chemistry
5.
J Colloid Interface Sci ; 347(1): 120-6, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20394940

ABSTRACT

Sorption of inorganic elements onto carbonate minerals has been intensively described in the literature by two reaction steps: (1) a first one rapid and completed within a few hours and (2) a second one slower, eventually irreversible, and occurring at a constant rate. The first step is often attributed to an ion-exchange process, but its reversibility is rarely investigated. Consequently, discrimination of the global sorption phenomenon into two different mechanisms is not always justified. In this study, we investigated, by batch experiments, both sorption and desorption of Ca(II), HCO(3)(-), and Zn(II), radiolabeled with isotopes (45)Ca(II), H(14)CO(3)(-), and (65)Zn(II), respectively, onto synthetic pure calcite. Solutions were preequilibrated with atmospheric p(CO2) and saturated with respect to calcite. Therefore, our purpose was to: (1) obtain experimental distribution coefficients of major elements (Ca(II) and HCO(3)(-)) and a trace element (Zn(II)) onto calcite from sorption and desorption experiments, (2) test the validity of a first-occurring ion-exchange process generally noted in the literature, by calculating distribution coefficients for the "sole" exchange process, and (3) quantify the amounts of Ca(II), HCO(3)(-), and Zn(II) sorbed on the calcite surface by the sole "exchange process" and compare them with surface crystallochemical data. Ca(II) or HCO(3)(-) sorption experimental data suggest that a significant fraction of these two elements was sorbed irreversibly onto or in the calcite. By using a method based on isotopic ratios, the Ca(II) or HCO(3)(-) concentrations, which are reversibly adsorbed on the calcite, have been quantified. These concentrations are respectively estimated at 4.0+/-2.0 x 10(-4) and 7.0+/-1.5 x 10(-4) mol/kg. The obtained Ca(II) surface concentration value is one order of magnitude lower than the one obtained from isotopic measurement by former authors [Geochim. Cosmochim. Acta 55 (1991) 1549; Geochim. Cosmochim. Acta 51 (1987) 1477; Geochim. Cosmochim. Acta 52 (1988) 2281] at the same pH. On the other hand, the kinetics of Zn(II) sorption onto calcite was followed over more than 1000 h. Sorption/desorption experimental results suggest that the sorption is totally reversible at least when total aqueous Zn concentration is less than 10(-6) mol/L and when experiments are performed in equilibrium with both calcite and p(CO2)=10(-3.5) atm. Under these conditions and at pH 8.3, the occupancy rate of Zn(II) onto the calcite surface is estimated to represent approximately 1% of the total surface-site density.

SELECTION OF CITATIONS
SEARCH DETAIL
...