Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Lett ; 24(10): 2219-2237, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34288313

ABSTRACT

Evaluating the effects of multiple stressors on ecosystems is becoming increasingly vital with global changes. The role of species interactions in propagating the effects of stressors, although widely acknowledged, has yet to be formally explored. Here, we conceptualise how stressors propagate through food webs and explore how they affect simulated three-species motifs and food webs of the Canadian St. Lawrence System. We find that overlooking species interactions invariably underestimate the effects of stressors, and that synergistic and antagonistic effects through food webs are prevalent. We also find that interaction type influences a species' susceptibility to stressors; species in omnivory and tri-trophic food chain interactions in particular are sensitive and prone to synergistic and antagonistic effects. Finally, we find that apex predators were negatively affected and mesopredators benefited from the effects of stressors due to their trophic position in the St. Lawrence System, but that species sensitivity is dependent on food web structure. In conceptualising the effects of multiple stressors on food webs, we bring theory closer to practice and show that considering the intricacies of ecological communities is key to assess the net effects of stressors on species.


Subject(s)
Ecosystem , Food Chain , Biota , Canada , Models, Biological
2.
PeerJ ; 9: e9616, 2021.
Article in English | MEDLINE | ID: mdl-33585077

ABSTRACT

Indigenous Peoples and Local Communities (IPLCs) have inhabited coastal areas, the seas, and remote islands for millennia, and developed place-based traditional ancestral knowledge and diversified livelihoods associated with the biocultural use of marine and coastal ecosystems. Through their cultural traditions, customary wise practices, and holistic approaches to observe, monitor, understand, and appreciate the Natural World, IPLCs have been preserving, managing, and sustainably using seascapes and coastal landscapes, which has been essential for biodiversity conservation. The international community has more than ever recognized the central role of IPLCs in the conservation of biodiversity-rich ecosystems, in particular, for the achievement of the Global Biodiversity Targets determined by the Parties to the United Nations Convention on Biological Diversity to tackle biodiversity loss. However, much remains to be done to fully recognize and protect at national levels IPLCs' Traditional Biodiversity Knowledge (TBK), ways of life, and their internationally recognized rights to inhabit, own, manage and govern traditional lands, territories, and waters, which are increasingly threatened. At the 2018 4th World Conference on Marine Biodiversity held in Montréal, Canada, eight themed working groups critically discussed progress to date and barriers that have prevented the achievement of the Aichi Biodiversity Targets agreed for the period 2011-2020, and priority actions for the Post-2020 Global Biodiversity Framework. Discussions in the "Application of Biodiversity Knowledge" working group focused on Targets 11 and 18 and the equal valuation of diverse Biodiversity Knowledge Systems (BKS). This Perspective Paper summarizes the 10 Priority Actions identified for a holistic biodiversity conservation, gender equality and human rights-based approach that strengthens the role of IPLCs as biodiversity conservation decision-makers and managers at national and international levels. Furthermore, the Perspective proposes a measurable Target 18 post-2020 and discusses actions to advance the recognition of community-based alternative conservation schemes and TBK to ensure the long-lasting conservation, customary biocultural use, and sustainable multi-functional management of nature around the globe.

3.
PeerJ ; 8: e8171, 2020.
Article in English | MEDLINE | ID: mdl-32140297

ABSTRACT

In order to help safeguard biodiversity from global changes, the Conference of the Parties developed a Strategic Plan for Biodiversity for the period 2011-2020 that included a list of twenty specific objectives known as the Aichi Biodiversity Targets. With the end of that timeframe in sight, and despite major advancements in biodiversity conservation, evidence suggests that the majority of the Targets are unlikely to be met. This article is part of a series of perspective pieces from the 4th World Conference on Marine Biodiversity (May 2018, Montréal, Canada) to identify next steps towards successful biodiversity conservation in marine environments. We specifically reviewed holistic environmental assessment studies (HEA) and their contribution to reaching the Targets. Our analysis was based on multiple environmental approaches which can be considered as holistic, and we discuss how HEA can contribute to the Aichi Biodiversity Targets in the near future. We found that only a few HEA articles considered a specific Biodiversity Target in their research, and that Target 11, which focuses on marine protected areas, was the most commonly cited. We propose five research priorities to enhance HEA for marine biodiversity conservation beyond 2020: (i) expand the use of holistic approaches in environmental assessments, (ii) standardize HEA vocabulary, (iii) enhance data collection, sharing and management, (iv) consider ecosystem spatio-temporal variability and (v) integrate ecosystem services in HEA. The consideration of these priorities will promote the value of HEA and will benefit the Strategic Plan for Biodiversity.

4.
Nat Ecol Evol ; 3(8): 1153-1161, 2019 08.
Article in English | MEDLINE | ID: mdl-31358950

ABSTRACT

The productivity of marine ecosystems and the services they provide to humans are largely dependent on complex interactions between prey and predators. These are embedded in a diverse network of trophic interactions, resulting in a cascade of events following perturbations such as species extinction. The sheer scale of oceans, however, precludes the characterization of marine feeding networks through de novo sampling. This effort ought instead to rely on a combination of extensive data and inference. Here we investigate how the distribution of trophic interactions at the global scale shapes the marine fish food web structure. We hypothesize that the heterogeneous distribution of species ranges in biogeographic regions should concentrate interactions in the warmest areas and within species groups. We find that the inferred global metaweb of marine fish-that is, all possible potential feeding links between co-occurring species-is highly connected geographically with a low degree of spatial modularity. Metrics of network structure correlate with sea surface temperature and tend to peak towards the tropics. In contrast to open-water communities, coastal food webs have greater interaction redundancy, which may confer robustness to species extinction. Our results suggest that marine ecosystems are connected yet display some resistance to perturbations because of high robustness at most locations.


Subject(s)
Ecosystem , Food Chain , Animals , Extinction, Biological , Fishes , Humans , Oceans and Seas
5.
PLoS One ; 8(11): e77514, 2013.
Article in English | MEDLINE | ID: mdl-24223713

ABSTRACT

Although prey species typically respond to the most limiting factors at coarse spatiotemporal scales while addressing biological requirements at finer scales, such behaviour may become challenging for species inhabiting human altered landscapes. We investigated how woodland caribou, a threatened species inhabiting North-American boreal forests, modified their fine-scale movements when confronted with forest management features (i.e. clearcuts and roads). We used GPS telemetry data collected between 2004 and 2010 on 49 female caribou in a managed area in Québec, Canada. Movements were studied using a use--availability design contrasting observed steps (i.e. line connecting two consecutive locations) with random steps (i.e. proxy of immediate habitat availability). Although caribou mostly avoided disturbances, individuals nonetheless modulated their fine-scale response to disturbances on a daily and annual basis, potentially compromising between risk avoidance in periods of higher vulnerability (i.e. calving, early and late winter) during the day and foraging activities in periods of higher energy requirements (i.e. spring, summer and rut) during dusk/dawn and at night. The local context in which females moved was shown to influence their decision to cross clearcut edges and roads. Indeed, although females typically avoided crossing clearcut edges and roads at low densities, crossing rates were found to rapidly increase in greater disturbance densities. In some instance, however, females were less likely to cross edges and roads as densities increased. Females may then be trapped and forced to use disturbed habitats, known to be associated with higher predation risk. We believe that further increases in anthropogenic disturbances could exacerbate such behavioural responses and ultimately lead to population level consequences.


Subject(s)
Animal Distribution , Reindeer , Animals , Behavior, Animal , Conservation of Natural Resources , Ecosystem , Female , Forestry , Population Dynamics , Quebec
SELECTION OF CITATIONS
SEARCH DETAIL
...