Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biochimie ; 104: 70-80, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24878279

ABSTRACT

Serum amyloid A (SAA) is an apolipoprotein involved in poorly understood roles in inflammation. Upon trauma, hepatic expression of SAA rises 1000 times the basal levels. In the case of inflammatory diseases like rheumatoid arthritis, there is a risk for deposition of SAA fibrils in various organs leading to Amyloid A (AA) amyloidosis. Although the amyloid deposits in AA amyloidosis accumulate with the glycosaminoglycan (GAG) heparan sulfate, the role GAGs play in the function and pathology of SAA is an enigma. It has been shown that GAG sulfation is a contributing factor in protein fibrillation and for co-aggregating with a plethora of amyloidogenic proteins. Herein, the effects of heparin, heparan sulfate, hyaluronic acid, chondroitin sulfate A, and heparosan on the oligomerization and aggregation properties of pathogenic mouse SAA1.1 were investigated. Delipidated SAA was used to better understand the interactions between SAA and GAGs without the complicating involvement of lipids. The results revealed-to varying degrees-that all GAGs accelerated SAA1.1 aggregation, but had variable effects on its fibrillation. Heparan sulfate, hyaluronic acid, and heparosan did not affect much the fibrillation of SAA1.1. In contrast, chondroitin sulfate A blocked SAA fibril formation and facilitated the formation of spherical aggregates of various sizes. Interestingly, heparin caused formation of spherical SAA1.1 aggregates of various sizes, vast amounts of thin protofibrils, and few long fibrils of various heights. These results suggest that GAGs may have an intrinsic and divergent influence on the aggregation and fibrillation of HDL-free SAA1.1 in vivo, with functional and pathological implications.


Subject(s)
Glycosaminoglycans/pharmacology , Protein Multimerization/drug effects , Serum Amyloid A Protein/chemistry , Amino Acid Sequence , Animals , Glycosaminoglycans/metabolism , Heparin/metabolism , Kinetics , Mice , Models, Molecular , Molecular Sequence Data , Protein Refolding/drug effects , Protein Structure, Secondary , Serum Amyloid A Protein/metabolism
2.
Glycoconj J ; 31(2): 109-16, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24158546

ABSTRACT

Placental malaria is a serious problem in sub-Saharan Africa. Young women are particular susceptible to contracting this form of malaria during their first or second pregnancy despite previously acquired immunity from past infections. Placental malaria is caused by Plasmodium falciparum parasites expressing VAR2CSA on the erythrocyte surface. This protein adheres to a low-sulfated chondroitin sulfate-A found in placental tissue causing great harm to both mother and developing fetus. In rare cases, the localization of infected erythrocytes to the placenta can even result in the vertical transmission of malaria. In an effort to better understand this infection, chondroitin sulfate was isolated from the cotyledon part of the placenta, which should be accessible for parasite adhesion, as well as two non-accessible parts of the placenta to serve as controls. The placental chondroitin sulfate structures and their VAR2CSA binding were characterized. All portions of human placenta contained sufficient amounts of the appropriate low-sulfated chondroitin sulfate-A to display high-affinity binding to a recombinant truncated VAR2CSA construct, as determined using surface plasmon resonance. The cotyledon is the only placental tissue accessible to parasites in the bloodstream, suggesting it is the primary receptor for parasite infected red blood cells.


Subject(s)
Antigens, Protozoan/metabolism , Erythrocytes/metabolism , Glycosaminoglycans/metabolism , Placenta/chemistry , Binding Sites , Chondroitin Sulfates/chemistry , Erythrocytes/parasitology , Female , Glycosaminoglycans/chemistry , Glycosaminoglycans/isolation & purification , Humans , Molecular Weight , Pregnancy , Surface Plasmon Resonance
3.
Anal Bioanal Chem ; 406(2): 525-36, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24271188

ABSTRACT

O-sulfotransferases (OSTs) are critical enzymes in the cellular biosynthesis of the biologically and pharmacologically important heparan sulfate and heparin. Recently, these enzymes have been cloned and expressed in bacteria for application in the chemoenzymatic synthesis of glycosaminoglycan-based drugs. OST activity assays have largely relied on the use of radioisotopic methods using [(35)S] 3'-phosphoadenosine-5'-phosphosulfate and scintillation counting. Herein, we examine alternative assays that are more compatible with a biomanufacturing environment. A high throughput microtiter-based approach is reported that relies on a coupled bienzymic colorimetric assay for heparan sulfate and heparin OSTs acting on polysaccharide substrates using arylsulfotransferase-IV and p-nitrophenylsulfate as a sacrificial sulfogroup donor. A second liquid chromatography-mass spectrometric assay, for heparan sulfate and heparin OSTs acting on structurally defined oligosaccharide substrates, is also reported that provides additional information on the number and positions of the transferred sulfo groups within the product. Together, these assays allow quantitative and mechanistic information to be obtained on OSTs that act on heparan sulfate and heparin precursors.


Subject(s)
Biological Assay , Heparin/chemistry , Heparitin Sulfate/chemistry , Sulfotransferases/analysis , Carbohydrate Sequence , Chromatography, Liquid , Colorimetry , Kinetics , Mass Spectrometry , Molecular Sequence Data , Nitrobenzenes/chemistry , Substrate Specificity , Sulfotransferases/chemistry
4.
Article in English | MEDLINE | ID: mdl-28890953

ABSTRACT

Heparin/heparin sulfate (HS) interacts with a number of proteins thereby playing an essential role in the regulation of many physiological processes. The understanding of heparin/HS-protein interactions at the molecular level is of fundamental importance to biology and will aid in the development of highly specific glycan-based therapeutic agents. The heparin-binding proteins (HBPs) interact with sulfated domains of heparin/HS chains primarily through ionic attraction between negatively charged groups in HS/heparin chains and basic amino acid residues within the protein. Reports in literature have been shown that heparin molecules have a high affinity for a wide range of metal ions. In the present study, we used surface plasmon resonance (SPR) to study the effects of metal ions (under physiological and non-physiological concentrations) on heparin/HS-protein interactions. The results showed that under non-physiological of metal ion concentration, different metal ions showed different effects on heparin binding to fibroblast growth factor-1 (FGF1) and interleakin-7 (IL7). While the effects of individual metal ion at physiological concentrations had little impact on protein binding, the mixed metal ions reduced the FGF1/heparin or IL7/heparin binding affinity, changing its binding profile.

5.
Biochemistry ; 52(36): 6275-85, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23952613

ABSTRACT

Adeno-associated virus (AAV) is a key candidate in the development of gene therapy. In this work, we used surface plasmon resonance spectroscopy to study the interaction between AAV and heparin and other glycosaminoglycans (GAGs). Surface plasmon resonance results revealed that heparin binds to AAV with an extremely high affinity. Solution competition studies showed that binding of AAV to heparin is chain length-dependent. AAV prefers to bind full chain heparin. All sulfo groups (especially N-sulfo and 6-O-sulfo groups) on heparin are important for the AAV-heparin interaction. Higher levels of sulfo group substitution in GAGs enhance their binding affinities. Atomic force microscopy was also performed to image AAV-2 in a complex with heparin.


Subject(s)
Dependovirus/metabolism , Glycosaminoglycans/metabolism , Heparin/metabolism , Animals , Heparin/analogs & derivatives , Microscopy, Atomic Force , Surface Plasmon Resonance , Swine
6.
Biochemistry ; 51(34): 6797-803, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22809401

ABSTRACT

Heparin and related heparan sulfate interact with a number of cytokines and growth factors, thereby playing an essential role in many physiological and pathophysiological processes by involving both signal transduction and the regulation of the tissue distribution of cytokines/growth factors. Follistatin (FS) is an autocrine protein with a heparin-binding motif that serves to regulate the cell proliferative activity of the paracrine hormone, and member of the TGF-ß family, activin A (ActA). Follistatin is currently under investigation as an antagonist of another TGF-ß family member, myostatin (Mstn), for the promotion of muscle growth in diseases associated with muscle atrophy. In this study, we employ surface plasmon resonance (SPR) spectroscopy to dissect the binding interactions between the heparin polysaccharide and both free follistatin (FS288) and its complexes (FS288-ActA and FS288-Mstn). FS288 complexes show much higher heparin binding affinity than FS288 alone. SPR solution competition studies using heparin oligosaccharides showed that the binding of FS288 and its complex to heparin is dependent on chain length. Full chain heparin or large oligosaccharides, having 18-20 sugar residues, show the highest binding activity for FS288 and the FS288-ActA complex, whereas smaller heparin molecules could interact with the FS288-Mstn complex. These interactions were also analyzed in normal physiological buffers and at different salt concentrations and pH values. Unbound follistatin was much more sensitive to all salt concentrations of >150 mM. The binding of heparin to the FS288-ActA complex was disrupted at 500 mM salt, whereas it was actually strengthened for the FS288-Mstn complex. At acidic pH values, binding of heparin to FS288 and the FS288-ActA complex was enhanced. While slightly acidic pH values (pH 6.2 and 5.2) enhanced the binding of the FS288-Mstn complex to heparin, at pH 4 heparin binding was inhibited. Overall, these studies demonstrate that binding of a specific ligand to FS288 differentially regulates its affinity and behavior for heparin molecules.


Subject(s)
Follistatin/metabolism , Heparin/metabolism , Surface Plasmon Resonance/methods , Activins/chemistry , Activins/metabolism , Follistatin/chemistry , Heparin/chemistry , Humans , Hydrogen-Ion Concentration , Kinetics , Ligands , Myostatin/chemistry , Myostatin/metabolism , Protein Binding
7.
Carbohydr Polym ; 87(1): 822-829, 2012 Jan 04.
Article in English | MEDLINE | ID: mdl-22140285

ABSTRACT

Chondroitin sulfate-E (chondroitin-4, 6-disulfate) was prepared from chondroitin sulfate-A (chondroitin-4 - sulfate) by regioselective sulfonation, performed using trimethylamine sulfur trioxide in formamide under argon. The structure of semi-synthetic chondroitin sulfate-E was analyzed by PAGE, (1)H NMR, (13)C NMR, 2D NMR and disaccharide analysis and compared with natural chondroitin sulfate-E. Both semi-synthetic and natural chondroitin sulfate-E were each biotinylated and immobilized on BIAcore SA biochips and their interactions with fibroblast growth factors displayed very similar binding kinetics and binding affinities. The current semi-synthesis offers an economical approach for the preparation of the rare chondroitin sulfate-E from the readily available chondroitin sulfate-A.

8.
Anal Bioanal Chem ; 401(9): 2793-803, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21931955

ABSTRACT

Seven commercial heparin active pharmaceutical ingredients and one commercial low molecular weight from different manufacturers were characterized with a view profiling their physicochemical properties. All heparins had similar molecular weight properties as determined by polyacrylamide gel electrophoresis (M(N), 10-11 kDa; M(W), 13-14 kDa; polydispersity (PD), 1.3-1.4) and by size exclusion chromatography (M(N), 14-16 kDa; M (W), 21-25 kDa; PD, 1.4-1.6). one-dimensional (1)H- and (13)C-nuclear magnetic resonance (NMR) evaluation of the heparin samples was performed, and peaks were fully assigned using two-dimensional NMR. The percentage of glucosamine residues with 3-O-sulfo groups and the percentage of N-sulfo groups and N-acetyl groups ranged from 5.8-7.9%, 78-82%, to 13-14%, respectively. There was substantial variability observed in the disaccharide composition, as determined by high performance liquid chromatography (HPLC)-mass spectral analysis of heparin lyase I-III digested heparins. Heparin oligosaccharide mapping was performed using HPLC following separate treatments with heparin lyase I, II, and III. These maps were useful in qualitatively and quantitatively identifying structural differences between these heparins. The binding affinities of these heparins to antithrombin III and thrombin were evaluated by using a surface plasmon resonance competitive binding assay. This study provides the physicochemical and activity characterization necessary for the appropriate design and synthesis of a generic bioengineered heparin.


Subject(s)
Chemistry, Physical/methods , Chromatography, High Pressure Liquid/methods , Heparin/analysis , Magnetic Resonance Spectroscopy/methods , Surface Plasmon Resonance/methods , Animals , Antithrombin III/metabolism , Carbohydrate Sequence , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Glucosamine/analysis , Heparin/chemistry , Heparin Lyase/metabolism , Molecular Sequence Data , Molecular Weight , Protein Binding , Swine , Thrombin/metabolism
9.
J Pharm Sci ; 100(8): 3396-3404, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21416466

ABSTRACT

The stability of a formulated heparin was examined during its sterilization by autoclaving. A new method to follow loss in heparin binding to the serine protease inhibitor, antithrombin III, and the serine protease, thrombin, was developed using a surface plasmon resonance competitive binding assay. This loss in binding affinity correlated well with loss in antifactor IIa (thrombin) activity as well as antifactor Xa activity as measured using conventional amidolytic assays. Autoclaving also resulted in a modest breakdown of the heparin backbone as confirmed by a slight reduction in number-averaged and weight-averaged molecular weight and an increase in polydispersity. Although no clear changes were observed by nuclear magnetic resonance spectroscopy, disaccharide composition analysis using high-performance liquid chromatography-electrospray ionization-mass spectrometry suggested that loss of selected sulfo groups had taken place. It is this sulfo group loss that probably accounts for a decrease in the binding of autoclaved heparin to antithrombin III and thrombin as well as the observed decrease in its amidolytic activity.


Subject(s)
Anticoagulants/chemistry , Heparin/chemistry , Hot Temperature , Sterilization/methods , Anticoagulants/pharmacology , Antithrombin III/chemistry , Chromatography, High Pressure Liquid , Drug Stability , Electrophoresis, Gel, Two-Dimensional , Factor Xa/chemistry , Heparin/pharmacology , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Surface Plasmon Resonance , Thrombin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...