Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(25): 41713-41725, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087563

ABSTRACT

We theoretically and experimentally study the noise correlations in an array of lasers based on a VECSEL (Vertical External Cavity Surface Emitting Laser) architecture. The array of two or three lasers is created inside a planar degenerate cavity with a mask placed in a self-imaging position. Injection from each laser to its neighbors is created by diffraction, which creates a controllable complex coupling coefficient. The noise correlations between the different modes are observed to be dramatically different when the lasers are phase-locked or unlocked. These results are well explained by a rate equation model that takes into account the class-A dynamics of the lasers. This model permits the isolatation of the influence of the complex coupling coefficients and of the Henry α-factor on the noise behavior of the laser array.

2.
Nat Commun ; 14(1): 8304, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097572

ABSTRACT

Recent studies on exceptional points (EPs) in non-Hermitian optical systems have revealed unique traits, including unidirectional invisibility, chiral mode switching and laser self-termination. In systems featuring gain/loss components, EPs are commonly accessed below the lasing threshold, i.e., in the linear regime. In this work, we experimentally demonstrate that EP singularities in coupled semiconductor nanolasers can be accessed above the lasing threshold, where they become branch points of a nonlinear dynamical system. Contrary to the common belief that unavoidable cavity detuning impedes the formation of EPs, here we demonstrate that such detuning is necessary for compensating the carrier-induced frequency shift, hence restoring the EP. Furthermore, we find that the pump imbalance at lasing EPs varies with the total pump power, enabling their continuous tracking. This work uncovers the unstable nature of EPs above laser threshold in coupled semiconductor lasers, offering promising opportunities for the realization of self-pulsing nanolaser devices and frequency combs.

3.
ACS Photonics ; 10(8): 2540-2548, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37602296

ABSTRACT

We report on a new approach of a low phase noise electro-optomechanical oscillator directly working in the GHz frequency range. The developed nanoscale oscillator is a one-dimensional photonic crystal made of gallium phosphide (GaP), heterogeneously integrated on silicon-on-insulator circuitry. Based on the strong interaction between the optical mode at the telecommunication wavelength and the mechanical mode in GHz, ultra-pure mechanical oscillations are enabled and directly imprinted on an optical carrier. Further stabilization is achieved with a delayed optoelectronic feedback loop using integrated electro-mechanical self-injection. We achieve a short-term stability of 0.7 Hz linewidth and a long-term stability with an Allan deviation below 10-7 Hz/Hz at 10 s averaging time, which represents an important step toward fully integrated optomechanical oscillators. Integrability and the low phase noise of this oscillator address some of the most important needs of optoelectronic oscillators and pave the way toward on-chip integrated microwave oscillators for microwave applications such as RADARs.

4.
Chaos ; 33(2): 023142, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36859235

ABSTRACT

Excitability, encountered in numerous fields from biology to neurosciences and optics, is a general phenomenon characterized by an all-or-none response of a system to an external perturbation of a given strength. When subject to delayed feedback, excitable systems can sustain multistable pulsing regimes, which are either regular or irregular time sequences of pulses reappearing every delay time. Here, we investigate an excitable microlaser subject to delayed optical feedback and study the emergence of complex pulsing dynamics, including periodic, quasiperiodic, and irregular pulsing regimes. This work is motivated by experimental observations showing these different types of pulsing dynamics. A suitable mathematical model, written as a system of delay differential equations, is investigated through an in-depth bifurcation analysis. We demonstrate that resonance tongues play a key role in the emergence of complex dynamics, including non-equidistant periodic pulsing solutions and chaotic pulsing. The structure of resonance tongues is shown to depend very sensitively on the pump parameter. Successive saddle transitions of bounding saddle-node bifurcations constitute a merging process that results in unexpectedly large regions of locked dynamics, which subsequently disconnect from the relevant torus bifurcation curve; the existence of such unconnected regions of periodic pulsing is in excellent agreement with experimental observations. As we show, the transition to unconnected resonance regions is due to a general mechanism: the interaction of resonance tongues locally at an extremum of the rotation number on a torus bifurcation curve. We present and illustrate the two generic cases of disconnecting and disappearing resonance tongues. Moreover, we show how a pair of a maximum and a minimum of the rotation number appears naturally when two curves of torus bifurcation undergo a saddle transition (where they connect differently).

5.
Opt Lett ; 48(6): 1462-1465, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36946953

ABSTRACT

Emission dynamics of a multimode broadband interband semiconductor laser have been investigated experimentally and theoretically. Non-linear dynamics of a III-V semiconductor quantum well surface-emitting laser reveal the existence of a modulational instability, observed in the anomalous dispersion regime. An additional unstable region arises in the normal dispersion regime, owing to carrier dynamics, and has no analogy in systems with fast gain recovery. The interplay between cavity dispersion and phase sensitive non-linearities is shown to affect the character of laser emission with phase turbulence, leading to regular self-excited oscillations of mode intensity, self-mode locking, and single-frequency emission stabilized by spectral symmetry breaking. Such physical behavior is a general phenomenon for any laser with a slow gain medium relative to the round trip time, in the absence of spatial inhomogeneities.

6.
Nat Commun ; 13(1): 6583, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36323690

ABSTRACT

Mechanical resonators can act as excellent intermediaries to interface single photons in the microwave and optical domains due to their high quality factors. Nevertheless, the optical pump required to overcome the large energy difference between the frequencies can add significant noise to the transduced signal. Here we exploit the remarkable properties of thin-film gallium phosphide to demonstrate bi-directional on-chip conversion between microwave and optical frequencies, realized by piezoelectric actuation of a Gigahertz-frequency optomechanical resonator. The large optomechanical coupling and the suppression of two-photon absorption in the material allows us to operate the device at optomechanical cooperativities greatly exceeding one. Alternatively, when using a pulsed upconversion pump, we demonstrate that we induce less than one thermal noise phonon. We include a high-impedance on-chip matching resonator to mediate the mechanical load with the 50-Ω source. Our results establish gallium phosphide as a versatile platform for ultra-low-noise conversion of photons between microwave and optical frequencies.

7.
Opt Express ; 30(12): 20515-20531, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-36224794

ABSTRACT

Metamaterials have played a major role in the development of optoelectronic devices due to their capability of coupling free-space radiation with active materials at the nanometer scale. In particular, unipolar photodetectors display highly improved performances when implemented into patch-antenna arrays. We study light-coupling and absorption in patch-antenna metamaterials by combining an experimental investigation, an analytical approach based on coupled mode theory and numerical simulations in order to understand how the geometrical parameters influence the electromagnetic energy transfer from the free-space to the active material. Our findings are applied to the design of optimized unipolar photodetectors with improved quantum efficiency.

8.
Phys Rev Lett ; 123(16): 163602, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31702356

ABSTRACT

Recent years have seen extraordinary progress in creating quantum states of mechanical oscillators, leading to great interest in potential applications for such systems in both fundamental as well as applied quantum science. One example is the use of these devices as transducers between otherwise disparate quantum systems. In this regard, a promising approach is to build integrated piezoelectric optomechanical devices that are then coupled to microwave circuits. Optical absorption, low quality factors, and other challenges have up to now prevented operation in the quantum regime, however. Here, we design and characterize such a piezoelectric optomechanical device fabricated from gallium phosphide in which a 2.9 GHz mechanical mode is coupled to a high quality factor optical resonator in the telecom band. The large electronic band gap and the resulting low optical absorption of this new material, on par with devices fabricated from silicon, allows us to demonstrate quantum behavior of the structure. This not only opens the way for realizing noise-free quantum transduction between microwaves and optics, but in principle also from various color centers with optical transitions in the near visible to the telecom band.

9.
Opt Express ; 27(16): 22316-22326, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510527

ABSTRACT

We present bi-frequency continuous wave oscillation in a semiconductor disk laser through direct writing of loss-inducing patterns onto an intra-cavity high reflector mirror. The laser is a Vertical External Cavity Surface Emitting Laser which is optically pumped by up to 1.1 W of 808 nm light from a fibre coupled multi-mode diode laser, and oscillates on two Hermite-Gaussian spatial modes simultaneously, achieving wavelength separations between 0.2 nm and 5 nm around 995 nm. We use a Digital Micromirror Device (DMD) enabled laser ablation system to define spatially specific loss regions on a laser mirror by machining away the Bragg layers from the mirror surface. The ablated pattern is comprised of two orthogonal lines with the centermost region undamaged, and is positioned in the laser cavity so as to interact with the lasing mode, thereby promoting the simultaneous oscillation of the fundamental and a higher order spatial mode. We demonstrate bi-frequency oscillation over a range of mask gap sizes and pump powers.

10.
Appl Opt ; 57(18): 5224-5229, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-30117985

ABSTRACT

Exploiting III-V semiconductor technologies, vertical external-cavity surface-emitting laser (VECSEL) technology has been identified for years as a good candidate to develop lasers with high power, large coherence, and broad tunability. Combined with fiber amplification technology, tunable single-frequency lasers can be flexibly boosted to a power level of several tens of watts. Here, we demonstrate a high-power, single-frequency, and broadly tunable laser based on VECSEL technology. This device emits in the near-infrared around 1.06 µm and exhibits high output power (>100 mW) with a low-divergence diffraction-limited TEM00 beam. It also features a narrow free-running linewidth of <400 kHz with high spectral purity (side mode suppression ratio >55 dB) and continuous broadband tunability greater than 250 GHz (<15 V piezo voltage, 6 kHz cutoff frequency) with a total tunable range up to 3 THz. In addition, a compact design without any movable intracavity elements offers a robust single-frequency regime. Through fiber amplification, a tunable single-frequency laser is achieved at an output power of 50 W covering the wavelength range from 1057 to 1066 nm. Excess intensity noise brought on by the amplification stage is in good agreement with a theoretical model. A low relative intensity noise value of -145 dBc/Hz is obtained at 1 MHz, and we reach the shot-noise limit above 200 MHz.

11.
Opt Lett ; 43(13): 3013-3016, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29957769

ABSTRACT

We report experimental and theoretical results on the pulse train dynamics in an excitable semiconductor microcavity laser with an integrated saturable absorber and delayed optical feedback. We show how short optical control pulses can trigger, erase, or retime regenerative pulse trains in the external cavity. Both repulsive and attractive interactions between pulses are observed, and are explained in terms of the internal dynamics of the carriers. A bifurcation analysis of a model consisting of a system of nonlinear delay differential equations shows that arbitrary sequences of coexisting pulse trains are very long transients towards weakly stable periodic solutions with equidistant pulses in the external cavity.

12.
Sci Rep ; 6: 38156, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27917885

ABSTRACT

The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = hl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here "orbital birefringence", based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create "orbital gain dichroism" allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 µm, a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications.

13.
Opt Lett ; 41(16): 3751-4, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27519080

ABSTRACT

We report a continuous-wave highly-coherent and tunable dual-frequency laser emitting at two frequencies separated by 30 GHz to 3 THz, based on compact III-V diode-pumped quantum-well surface-emitting semiconductor laser technology. The concept is based on the stable simultaneous operation of two Laguerre-Gauss transverse modes in a single-axis short cavity, using an integrated sub-wavelength-thick metallic mask. Simultaneous operation is demonstrated theoretically and experimentally by recording intensity noises and beat frequency, and time-resolved optical spectra. We demonstrated a >80 mW output power, diffraction-limited beam, narrow linewidth of <300 kHz, linear polarization state (>45 dB), and low intensity noise class-A dynamics of <0.3% rms, thus opening the path to a compact low-cost coherent GHz to THz source development.

14.
Opt Lett ; 41(3): 579-82, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26907428

ABSTRACT

High-quality (Q) factor indium phosphide (InP)-based 1D photonic crystal nanobeam cavities are fabricated on silicon on insulator waveguides. Through the optimization of the fabrication process, the intrinsic Q factor of these fully encapsulated nanocavities is demonstrated to attain values higher than 100,000. Experimental and numerical investigations are carried out on the impact, on the Q factor, of the strength of the evanescent wave coupling between the cavity and the waveguide. We reveal that this coupling can result in a modification of the electromagnetic field distribution in the resonant mode, which gives rise up to a factor 4 reduction in the intrinsic Q factor for the structures under study.

15.
Sci Rep ; 5: 16526, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26567535

ABSTRACT

Optomechanical systems, in which the vibrations of a mechanical resonator are coupled to an electromagnetic radiation, have permitted the investigation of a wealth of novel physical effects. To fully exploit these phenomena in realistic circuits and to achieve different functionalities on a single chip, the integration of optomechanical resonators is mandatory. Here, we propose a novel approach to heterogeneously integrate arrays of two-dimensional photonic crystal defect cavities on top of silicon-on-insulator waveguides. The optomechanical response of these devices is investigated and evidences an optomechanical coupling involving both dispersive and dissipative mechanisms. By controlling the optical coupling between the waveguide and the photonic crystal, we were able to vary and understand the relative strength of these couplings. This scalable platform allows for an unprecedented control on the optomechanical coupling mechanisms, with a potential benefit in cooling experiments, and for the development of multi-element optomechanical circuits in the framework of optomechanically-driven signal-processing applications.

16.
Opt Express ; 22(9): 10570-8, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24921759

ABSTRACT

Thermal properties of InP-based quantum well photonic crystal nanobeam lasers heterogeneously integrated on silicon on insulator waveguides are studied. We show both numerically and experimentally the reduction of the thermal resistance of the III-V cavities by adjusting the composition of the layer which bonds the III-V materials to the silicon wafer and by adding an over-cladding on top of the cavities. Using a bonding layer made of benzocyclobutene and SiO(2) and an over-cladding of MgF(2), we found a decrease by a factor higher than 35 compared to air-suspended photonic crystal nanobeam cavities. Such optimized structures are demonstrated to operate under continuous wave pumping for several 10's of minutes despite the adverse effect of non-radiative surface recombination of carriers.

17.
Opt Express ; 18(11): 11979-89, 2010 May 24.
Article in English | MEDLINE | ID: mdl-20589060

ABSTRACT

We have developed surface-emitting single-mode quantum cascade lasers which employ high-contrast photonic-crystal resonators. The devices operate on band-edge states of the photonic band-structure. The mode profile and polarization characteristics of the band-edge modes are calculated by three-dimensional finite-difference time-domain simulation. Experimentally, the spectral properties, the far-field patterns, and the polarization characteristics of the lasers are determined and compared with simulations. The good agreement between the simulations and the experiments confirms that the hexapolar mode at the Gamma-point band-edge gives rise to lasing. By using a novel and advanced fabrication method, deep and vertical PhC holes are fabricated with no metal redeposition on the sidewalls, which improves the laser performance with respect to the current status. The angular of the output beam is approximately 15 masculine, and the side mode suppression ratio of the single mode emission is about 25 dB. The threshold current density at 78 K and the maximum operation temperature are 7.6 kA/cm2 and 220 K, respectively. The performance is mainly limited by the loss induced by surface plasmon waveguide, which can be overcome by using an optimized dielectric waveguide structure.


Subject(s)
Lasers , Surface Plasmon Resonance/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Photons , Quantum Theory , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...