Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 25(3): 035701, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24346484

ABSTRACT

Branched indium tin oxide (ITO) nanowire networks are promising candidates for transparent conductive oxide applications, such as optoelectronic electrodes, due to their high porosity. However, these branched networks also present new challenges in assessing conductivity. Conventional four-point probe techniques cannot separate the effect of porosity on the long-range conductivity from the intrinsic material conductivity. Here we compare the average nanoscale conductivity within the film measured by terahertz time-domain spectroscopy (THz-TDS) to the film conductivity measured by four-point probe in a branched ITO nanowire network. Both techniques report conductivity increases with deposition flux rate from 0.5 to 3.0 nm s(-1), achieving a maximum of ~ 10 (Ω cm)(-1). Modeling the THz-TDS conductivity data using the Drude-Smith model allows us to distinguish between conductivity increases resulting from morphological changes and those resulting from the intrinsic properties of the ITO. In particular, the intrinsic material conductivity within the nanowires can be extracted, and is found to reach a maximum of ~ 3000 (Ω cm)(-1), comparable to bulk ITO. To determine the mechanism responsible for increasing conductivity with flux rate, we characterize dopant concentration and morphological changes (i.e., to branching behavior, nanowire diameter and nucleation layers). We propose that changes in the electron density, primarily due to changes in O-vacancy concentration at different flux rates, are responsible for the observed conductivity increase. This understanding will assist balancing structural and conductivity requirements in applications of transparent conductive oxide networks.

2.
Nanotechnology ; 23(10): 105608, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22361439

ABSTRACT

A new growth technique for indium tin oxide nanowhiskers with increased control over feature size and spacing is reported. The technique is based on a unique combination of self-catalysed vapour-liquid-solid (VLS) growth and glancing angle deposition (GLAD). This VLS-GLAD technique provides enhanced control over nanowhisker morphology as the effect of typical VLS growth parameters (e.g. flux rate, temperature) is amplified at large deposition angles characteristic of GLAD. Spatial modulation of the collimated growth flux controls trunk width, number and orientation of branches, and overall nanowhisker density. Here we report the influence of growth conditions (including deposition angle, flux rate, nominal pitch and substrate temperature) on nanowhisker morphology, with specific focus on the effect of large deposition angles. Sheet resistance and transmission of the films were measured to characterize their performance as transparent conductive oxides. Hybrid nanostructured films grown in this study include high surface area nanowhiskers protruding from a conductive film, ideal for transparent conductive electrode applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...