Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Dis Clin North Am ; 36(1): 49-71, 2022 03.
Article in English | MEDLINE | ID: mdl-35168714

ABSTRACT

Tuberculosis (TB) is one of the leading causes of mortality in children worldwide, but there remain significant challenges in diagnosing and treating TB infection and disease. Treatment of TB infection in children and adolescents is critical to prevent progression to TB disease and to prevent them from becoming the future reservoir for TB transmission. This article reviews the clinical approach to diagnosing and treating latent TB infection and pulmonary and extrapulmonary TB disease in children. Also discussed are emerging diagnostics and therapeutic regimens that aim to improve pediatric TB detection and outcomes.


Subject(s)
Tuberculosis , Adolescent , Child , Humans , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/epidemiology
2.
J Infect Dis ; 224(4): 606-615, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34398245

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a severe clinical phenotype of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that remains poorly understood. METHODS: Hospitalized children <18 years of age with suspected coronavirus disease 2019 (COVID-19) (N = 53) were recruited into a prospective cohort study; 32 had confirmed COVID-19, with 16 meeting the US Centers for Disease Control criteria for MIS-C. Differences in nasopharyngeal viral ribonucleic acid (RNA) levels, SARS-CoV-2 seropositivity, and cytokine/chemokine profiles were examined, including after adjustments for age and sex. RESULTS: The median ages for those with and without MIS-C were 8.7 years (interquartile range [IQR], 5.5-13.9) and 2.2 years (IQR, 1.1-10.5), respectively (P = .18), and nasopharyngeal levels of SARS-CoV-2 RNA did not differ significantly between the 2 groups (median 63 848.25 copies/mL versus 307.1 copies/mL, P = .66); 75% of those with MIS-C were antibody positive compared with 44% without (P = .026). Levels of 14 of 37 cytokines/chemokines (interleukin [IL]-1RA, IL-2RA, IL-6, IL-8, tumor necrosis factor-α, IL-10, IL-15, IL-18, monocyte chemoattractant protein [MCP]-1, IP-10, macrophage-inflammatory protein [MIP]-1α, MCP-2, MIP-1ß, eotaxin) were significantly higher in children with MIS-C compared to those without, irrespective of age or sex (false discovery rate <0.05; P < .05). CONCLUSIONS: The distinct pattern of heightened cytokine/chemokine dysregulation observed with MIS-C, compared with acute COVID-19, occurs across the pediatric age spectrum and with similar levels of nasopharyngeal SARS-CoV-2 RNA.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Chemokines/metabolism , Cytokines/metabolism , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/metabolism , Systemic Inflammatory Response Syndrome/virology , Adolescent , Age Factors , Antibodies, Viral/immunology , Biomarkers , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , Host-Pathogen Interactions , Humans , Male , RNA, Viral , Serologic Tests , Severity of Illness Index , Sex Factors , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/epidemiology , Viral Load
3.
Pediatr Infect Dis J ; 40(2): e72-e76, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33181783

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), an entity in children initially characterized by milder case presentations and better prognoses as compared with adults. Recent reports, however, raise concern for a new hyperinflammatory entity in a subset of pediatric COVID-19 patients. METHODS: We report a fatal case of confirmed COVID-19 with hyperinflammatory features concerning for both multi-inflammatory syndrome in children (MIS-C) and primary COVID-19. RESULTS: This case highlights the ambiguity in distinguishing between these two entities in a subset of pediatric patients with COVID-19-related disease and the rapid decompensation these patients may experience. CONCLUSIONS: Appropriate clinical suspicion is necessary for both acute disease and MIS-C. SARS-CoV-2 serologic tests obtained early in the diagnostic process may help to narrow down the differential but does not distinguish between acute COVID-19 and MIS-C. Better understanding of the hyperinflammatory changes associated with MIS-C and acute COVID-19 in children will help delineate the roles for therapies, particularly if there is a hybrid phenotype occurring in adolescents.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Myocarditis/complications , Myocarditis/physiopathology , Adolescent , Black or African American , COVID-19/diagnosis , COVID-19/pathology , Female , Humans , Intensive Care Units , Myocarditis/diagnosis , Myocarditis/pathology , SARS-CoV-2/isolation & purification , Systemic Inflammatory Response Syndrome
4.
PLoS One ; 9(3): e92185, 2014.
Article in English | MEDLINE | ID: mdl-24647281

ABSTRACT

Sickle hemoglobin (Hb) S and HbC may protect against malaria by reducing the expression of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of parasitized red blood cells (RBCs), thereby weakening their cytoadherence to microvascular endothelial cells (MVECs) and impairing their activation of MVECs to produce pathological responses. Therefore, we hypothesized that parasites causing malaria in HbAS or HbAC heterozygotes have overcome this protective mechanism by expressing PfEMP1 variants which mediate relatively strong binding to MVECs. To test this hypothesis, we performed 31 cytoadherence comparisons between parasites from HbAA and HbAS (or HbAC) Malian children with malaria. Ring-stage parasites from HbAA and HbAS (or HbAC) children were cultivated to trophozoites, purified, and then inoculated in parallel into the same wildtype uninfected RBCs. After one cycle of invasion and maturation to the trophozoite stage expressing PfEMP1, parasite strains were compared for binding to MVECs. In this assay, there were no significant differences in the binding of parasites from HbAS and HbAC children to MVECs compared to those from HbAA children (HbAS, fold-change  = 1.46, 95% CI 0.97-2.19, p = 0.07; HbAC, fold-change  = 1.19, 95% CI 0.77-1.84, p = 0.43). These data suggest that in-vitro reductions in cytoadherence by HbS and HbC may not be selecting for expression of high-avidity PfEMP1 variants in vivo. Future studies that identify PfEMP1 domains or amino-acid motifs which are selectively expressed in parasites from HbAS children may provide further insights into the mechanism of malaria protection by the sickle-cell trait.


Subject(s)
Hemoglobin A/metabolism , Hemoglobin C/metabolism , Hemoglobin, Sickle/metabolism , Plasmodium falciparum/cytology , Adolescent , Animals , Biological Assay , Cell Adhesion , Child , Child, Preschool , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Infant , Malaria, Falciparum/parasitology , Mali , Microvessels/pathology , Parasites/cytology , Parasites/isolation & purification , Phenotype , Plasmodium falciparum/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...