Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041912

ABSTRACT

This manuscript describes the development of a resource module that is part of a learning platform named "NIGMS Sandbox for Cloud-based Learning" https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox at the beginning of this Supplement. This module delivers learning materials on basic principles in biomarker discovery in an interactive format that uses appropriate cloud resources for data access and analyses. In collaboration with Google Cloud, Deloitte Consulting and NIGMS, the Rhode Island INBRE Molecular Informatics Core developed a cloud-based training module for biomarker discovery. The module consists of nine submodules covering various topics on biomarker discovery and assessment and is deployed on the Google Cloud Platform and available for public use through the NIGMS Sandbox. The submodules are written as a series of Jupyter Notebooks utilizing R and Bioconductor for biomarker and omics data analysis. The submodules cover the following topics: 1) introduction to biomarkers; 2) introduction to R data structures; 3) introduction to linear models; 4) introduction to exploratory analysis; 5) rat renal ischemia-reperfusion injury case study; (6) linear and logistic regression for comparison of quantitative biomarkers; 7) exploratory analysis of proteomics IRI data; 8) identification of IRI biomarkers from proteomic data; and 9) machine learning methods for biomarker discovery. Each notebook includes an in-line quiz for self-assessment on the submodule topic and an overview video is available on YouTube (https://www.youtube.com/watch?v=2-Q9Ax8EW84). This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Subject(s)
Biomarkers , Cloud Computing , Biomarkers/metabolism , Animals , Software , Humans , Rats , Machine Learning , Computational Biology/methods
2.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041910

ABSTRACT

Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) generates genome-wide chromatin accessibility profiles, providing valuable insights into epigenetic gene regulation at both pooled-cell and single-cell population levels. Comprehensive analysis of ATAC-seq data involves the use of various interdependent programs. Learning the correct sequence of steps needed to process the data can represent a major hurdle. Selecting appropriate parameters at each stage, including pre-analysis, core analysis, and advanced downstream analysis, is important to ensure accurate analysis and interpretation of ATAC-seq data. Additionally, obtaining and working within a limited computational environment presents a significant challenge to non-bioinformatic researchers. Therefore, we present Cloud ATAC, an open-source, cloud-based interactive framework with a scalable, flexible, and streamlined analysis framework based on the best practices approach for pooled-cell and single-cell ATAC-seq data. These frameworks use on-demand computational power and memory, scalability, and a secure and compliant environment provided by the Google Cloud. Additionally, we leverage Jupyter Notebook's interactive computing platform that combines live code, tutorials, narrative text, flashcards, quizzes, and custom visualizations to enhance learning and analysis. Further, leveraging GPU instances has significantly improved the run-time of the single-cell framework. The source codes and data are publicly available through NIH Cloud lab https://github.com/NIGMS/ATAC-Seq-and-Single-Cell-ATAC-Seq-Analysis. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Subject(s)
Cloud Computing , High-Throughput Nucleotide Sequencing , Software , High-Throughput Nucleotide Sequencing/methods , Humans , Computational Biology/methods , Chromatin Immunoprecipitation Sequencing/methods , Single-Cell Analysis/methods , Chromatin/genetics , Chromatin/metabolism
3.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041913

ABSTRACT

This study describes the development of a resource module that is part of a learning platform named 'NIGMS Sandbox for Cloud-based Learning' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox at the beginning of this Supplement. This module is designed to facilitate interactive learning of whole-genome bisulfite sequencing (WGBS) data analysis utilizing cloud-based tools in Google Cloud Platform, such as Cloud Storage, Vertex AI notebooks and Google Batch. WGBS is a powerful technique that can provide comprehensive insights into DNA methylation patterns at single cytosine resolution, essential for understanding epigenetic regulation across the genome. The designed learning module first provides step-by-step tutorials that guide learners through two main stages of WGBS data analysis, preprocessing and the identification of differentially methylated regions. And then, it provides a streamlined workflow and demonstrates how to effectively use it for large datasets given the power of cloud infrastructure. The integration of these interconnected submodules progressively deepens the user's understanding of the WGBS analysis process along with the use of cloud resources. Through this module, we can enhance the accessibility and adoption of cloud computing in epigenomic research, speeding up the advancements in the related field and beyond. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Subject(s)
Cloud Computing , DNA Methylation , Software , Whole Genome Sequencing , Whole Genome Sequencing/methods , Sulfites/chemistry , Humans , Epigenesis, Genetic , Computational Biology/methods
4.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041915

ABSTRACT

This manuscript describes the development of a resources module that is part of a learning platform named 'NIGMS Sandbox for Cloud-based Learning' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox at the beginning of this Supplement. This module delivers learning materials on implementing deep learning algorithms for biomedical image data in an interactive format that uses appropriate cloud resources for data access and analyses. Biomedical-related datasets are widely used in both research and clinical settings, but the ability for professionally trained clinicians and researchers to interpret datasets becomes difficult as the size and breadth of these datasets increases. Artificial intelligence, and specifically deep learning neural networks, have recently become an important tool in novel biomedical research. However, use is limited due to their computational requirements and confusion regarding different neural network architectures. The goal of this learning module is to introduce types of deep learning neural networks and cover practices that are commonly used in biomedical research. This module is subdivided into four submodules that cover classification, augmentation, segmentation and regression. Each complementary submodule was written on the Google Cloud Platform and contains detailed code and explanations, as well as quizzes and challenges to facilitate user training. Overall, the goal of this learning module is to enable users to identify and integrate the correct type of neural network with their data while highlighting the ease-of-use of cloud computing for implementing neural networks. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Subject(s)
Deep Learning , Neural Networks, Computer , Humans , Biomedical Research , Algorithms , Cloud Computing
SELECTION OF CITATIONS
SEARCH DETAIL
...