Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
New Phytol ; 243(2): 797-810, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38807290

ABSTRACT

Automated pollen analysis is not yet efficient on environmental samples containing many pollen taxa and debris, which are typical in most pollen-based studies. Contrary to classification, detection remains overlooked although it is the first step from which errors can propagate. Here, we investigated a simple but efficient method to automate pollen detection for environmental samples, optimizing workload and performance. We applied the YOLOv5 algorithm on samples containing debris and c. 40 Mediterranean plant taxa, designed and tested several strategies for annotation, and analyzed variation in detection errors. About 5% of pollen grains were left undetected, while 5% of debris were falsely detected as pollen. Undetected pollen was mainly in poor-quality images, or of rare and irregular morphology. Pollen detection remained effective when applied to samples never seen by the algorithm, and was not improved by spending time to provide taxonomic details. Pollen detection of a single model taxon reduced annotation workload, but was only efficient for morphologically differentiated taxa. We offer guidelines to plant scientists to analyze automatically any pollen sample, providing sound criteria to apply for detection while using common and user-friendly tools. Our method contributes to enhance the efficiency and replicability of pollen-based studies.


Subject(s)
Algorithms , Pollen , Automation , Environment , Image Processing, Computer-Assisted/methods
2.
ISME J ; 17(4): 630-640, 2023 04.
Article in English | MEDLINE | ID: mdl-36747097

ABSTRACT

Marine phytoplankton play important roles in the global ecosystem, with a limited number of cosmopolitan keystone species driving their biomass. Recent studies have revealed that many of these phytoplankton are complexes composed of sibling species, but little is known about the evolutionary processes underlying their formation. Gephyrocapsa huxleyi, a widely distributed and abundant unicellular marine planktonic algae, produces calcified scales (coccoliths), thereby significantly affects global biogeochemical cycles via sequestration of inorganic carbon. This species is composed of morphotypes defined by differing degrees of coccolith calcification, the evolutionary ecology of which remains unclear. Here, we report an integrated morphological, ecological and genomic survey across globally distributed G. huxleyi strains to reconstruct evolutionary relationships between morphotypes in relation to their habitats. While G. huxleyi has been considered a single cosmopolitan species, our analyses demonstrate that it has evolved to comprise at least three distinct species, which led us to formally revise the taxonomy of the G. huxleyi complex. Moreover, the first speciation event occurred before the onset of the last interglacial period (~140 ka), while the second followed during this interglacial. Then, further rapid diversifications occurred during the most recent ice-sheet expansion of the last glacial period and established morphotypes as dominant populations across environmental clines. These results suggest that glacial-cycle dynamics contributed to the isolation of ocean basins and the segregations of oceans fronts as extrinsic drivers of micro-evolutionary radiations in extant marine phytoplankton.


Subject(s)
Haptophyta , Phytoplankton , Phytoplankton/genetics , Ecosystem , Haptophyta/genetics , Oceans and Seas , Plankton
3.
Nature ; 601(7891): 79-84, 2022 01.
Article in English | MEDLINE | ID: mdl-34853471

ABSTRACT

Although the role of Earth's orbital variations in driving global climate cycles has long been recognized, their effect on evolution is hitherto unknown. The fossil remains of coccolithophores, a key calcifying phytoplankton group, enable a detailed assessment of the effect of cyclic orbital-scale climate changes on evolution because of their abundance in marine sediments and the preservation of their morphological adaptation to the changing environment1,2. Evolutionary genetic analyses have linked broad changes in Pleistocene fossil coccolith morphology to species radiation events3. Here, using high-resolution coccolith data, we show that during the last 2.8 million years the morphological evolution of coccolithophores was forced by Earth's orbital eccentricity with rhythms of around 100,000 years and 405,000 years-a distinct spectral signature to that of coeval global climate cycles4. Simulations with an Earth System Model5 coupled with an ocean biogeochemical model6 show a strong eccentricity modulation of the seasonal cycle, which we suggest directly affects the diversity of ecological niches that occur over the annual cycle in the tropical ocean. Reduced seasonality in surface ocean conditions favours species with mid-size coccoliths, increasing coccolith carbonate export and burial; whereas enhanced seasonality favours a larger range of coccolith sizes and reduced carbonate export. We posit that eccentricity pacing of phytoplankton evolution contributed to the strong 405,000-year cyclicity that is seen in global carbon cycle records.


Subject(s)
Biological Evolution , Climate Change/statistics & numerical data , Phytoplankton/metabolism , Seasons , Tropical Climate , Carbon Cycle , Ecosystem , Fossils , Geologic Sediments , History, Ancient , Indian Ocean , Pacific Ocean , Time Factors
4.
Nat Commun ; 9(1): 2396, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29921874

ABSTRACT

Several synergistic mechanisms were likely involved in the last deglacial atmospheric pCO2 rise. Leading hypotheses invoke a release of deep-ocean carbon through enhanced convection in the Southern Ocean (SO) and concomitant decreased efficiency of the global soft-tissue pump (STP). However, the temporal evolution of both the STP and the carbonate counter pump (CCP) remains unclear, thus preventing the evaluation of their contributions to the pCO2 rise. Here we present sedimentary coccolith records combined with export production reconstructions from the Subantarctic Pacific to document the leverage the SO biological carbon pump (BCP) has imposed on deglacial pCO2. Our data suggest a weakening of BCP during the phases of carbon outgassing, due in part to an increased CCP along with higher surface ocean fertility and elevated [CO2aq]. We propose that reduced BCP efficiency combined with enhanced SO ventilation played a major role in propelling the Earth out of the last ice age.

5.
Sci Adv ; 2(7): e1501822, 2016 07.
Article in English | MEDLINE | ID: mdl-27453937

ABSTRACT

Calcifying marine phytoplankton-coccolithophores- are some of the most successful yet enigmatic organisms in the ocean and are at risk from global change. To better understand how they will be affected, we need to know "why" coccolithophores calcify. We review coccolithophorid evolutionary history and cell biology as well as insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands and that coccolithophores might have calcified initially to reduce grazing pressure but that additional benefits such as protection from photodamage and viral/bacterial attack further explain their high diversity and broad spectrum ecology. The cost-benefit aspect of these traits is illustrated by novel ecosystem modeling, although conclusive observations remain limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming.


Subject(s)
Calcification, Physiologic/physiology , Haptophyta/metabolism , Calcium Carbonate/chemistry , Ecosystem , Global Warming , Hydrogen-Ion Concentration , Oceans and Seas , Photosynthesis , Seawater/chemistry
6.
J Geophys Res Solid Earth ; 121(11): 7716-7741, 2016 11.
Article in English | MEDLINE | ID: mdl-28163989

ABSTRACT

Geomagnetic dipole moment variations associated with polarity reversals and excursions are expressed by large changes of the cosmogenic nuclide beryllium-10 (10Be) production rates. Authigenic 10Be/9Be ratios (proxy of atmospheric 10Be production) from oceanic cores therefore complete the classical information derived from relative paleointensity (RPI) records. This study presents new authigenic 10Be/9Be ratio results obtained from cores MD05-2920 and MD05-2930 collected in the west equatorial Pacific Ocean. Be ratios from cores MD05-2920, MD05-2930 and MD90-0961 have been stacked and averaged. Variations of the authigenic 10Be/9Be ratio are analyzed and compared with the geomagnetic dipole low series reported from global RPI stacks. The largest 10Be overproduction episodes are related to dipole field collapses (below a threshold of 2 × 1022 Am2) associated with the Brunhes/Matuyama reversal, the Laschamp (41 ka) excursion, and the Iceland Basin event (190 ka). Other significant 10Be production peaks are correlated to geomagnetic excursions reported in literature. The record was then calibrated by using absolute dipole moment values drawn from the Geomagia and Pint paleointensity value databases. The 10Be-derived geomagnetic dipole moment record, independent from sedimentary paleomagnetic data, covers the Brunhes-Matuyama transition and the whole Brunhes Chron. It provides new and complementary data on the amplitude and timing of millennial-scale geomagnetic dipole moment variations and particularly on dipole moment collapses triggering polarity instabilities.

7.
Nat Commun ; 6: 7627, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26168910

ABSTRACT

Approximately half of the world's population lives in the tropics, and future changes in the hydrological cycle will impact not just the freshwater supplies but also energy production in areas dependent upon hydroelectric power. It is vital that we understand the mechanisms/processes that affect tropical precipitation and the eventual surface hydrological response to better assess projected future regional precipitation trends and variability. Paleo-climate proxies are well suited for this purpose as they provide long time series that pre-date and complement the present, often short instrumental observations. Here we present paleo-precipitation data from a speleothem located in Mesoamerica that reveal large multi-decadal declines in regional precipitation, whose onset coincides with clusters of large volcanic eruptions during the nineteenth and twentieth centuries. This reconstruction provides new independent evidence of long-lasting volcanic effects on climate and elucidates key aspects of the causal chain of physical processes determining the tropical climate response to global radiative forcing.

8.
Nat Protoc ; 9(3): 633-42, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24556786

ABSTRACT

We describe a procedure for measuring the thickness and mass of calcite particles that works for most calcite particles <4.5-µm thick. The calcite particles are observed in cross-polarized light, which enables the light transmitted through the calcite particles to be correlated with their thickness. Three polarizing planes are used to minimize the darkening of crystals at some orientations (black cross). This allows direct measurement of the thickness without recourse to a transfer function. This procedure has been used recently to determine the degree of calcification of coccoliths, which provides an indicator of ocean acidification. It takes only a few minutes per sample, and it is an improvement over the former protocol, which did not allow measurement of the thickness and mass of particles thicker than 1.5 µm.


Subject(s)
Calcium Carbonate/analysis
9.
J Phycol ; 45(4): 914-6, 2009 Aug.
Article in English | MEDLINE | ID: mdl-27034222

ABSTRACT

A new combination coccosphere of the heterococcolithophore Helicosphaera wallichii (Lohman 1902) Okada and McIntyre 1977 and holococcolithophore Syracolithus ponticuliferus (Kamptner 1941) Kleijne and Jordan 1990 is documented. This combination coccosphere was observed within a rich and diverse assemblage collected during late summer at a 20 m water depth from the NW Mediterranean Sea.

10.
Nature ; 445(7130): 908-11, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17314978

ABSTRACT

Moisture transport from the Atlantic to the Pacific ocean across Central America leads to relatively high salinities in the North Atlantic Ocean and contributes to the formation of North Atlantic Deep Water. This deep water formation varied strongly between Dansgaard/Oeschger interstadials and Heinrich events-millennial-scale abrupt warm and cold events, respectively, during the last glacial period. Increases in the moisture transport across Central America have been proposed to coincide with northerly shifts of the Intertropical Convergence Zone and with Dansgaard/Oeschger interstadials, with opposite changes for Heinrich events. Here we reconstruct sea surface salinities in the eastern equatorial Pacific Ocean over the past 90,000 years by comparing palaeotemperature estimates from alkenones and Mg/Ca ratios with foraminiferal oxygen isotope ratios that vary with both temperature and salinity. We detect millennial-scale fluctuations of sea surface salinities in the eastern equatorial Pacific Ocean of up to two to four practical salinity units. High salinities are associated with the southward migration of the tropical Atlantic Intertropical Convergence Zone, coinciding with Heinrich events and with Greenland stadials. The amplitudes of these salinity variations are significantly larger on the Pacific side of the Panama isthmus, as inferred from a comparison of our data with a palaeoclimate record from the Caribbean basin. We conclude that millennial-scale fluctuations of moisture transport constitute an important feedback mechanism for abrupt climate changes, modulating the North Atlantic freshwater budget and hence North Atlantic Deep Water formation.


Subject(s)
Greenhouse Effect , Humidity , Water Movements , Animals , Atlantic Ocean , Central America , Oxygen Isotopes , Pacific Ocean , Rain , Seawater/chemistry , Sodium Chloride/analysis , Temperature
11.
Nature ; 433(7023): 294-8, 2005 Jan 20.
Article in English | MEDLINE | ID: mdl-15662419

ABSTRACT

About 850,000 years ago, the period of the glacial cycles changed from 41,000 to 100,000 years. This mid-Pleistocene climate transition has been attributed to global cooling, possibly caused by a decrease in atmospheric carbon dioxide concentrations. However, evidence for such cooling is currently restricted to the cool upwelling regions in the eastern equatorial oceans, although the tropical warm pools on the western side of the ocean basins are particularly sensitive to changes in radiative forcing. Here we present high-resolution records of sea surface temperatures spanning the past 1.75 million years, obtained from oxygen isotopes and Mg/Ca ratios in planktonic foraminifera from the western Pacific warm pool. In contrast with the eastern equatorial regions, sea surface temperatures in the western Pacific warm pool are relatively stable throughout the Pleistocene epoch, implying little long-term change in the tropical net radiation budget. Our results challenge the hypothesis of a gradual decrease in atmospheric carbon dioxide concentrations as a dominant trigger of the longer glacial cycles since 850,000 years ago. Instead, we infer that the temperature contrast across the equatorial Pacific Ocean increased, which might have had a significant influence on the mid-Pleistocene climate transition.


Subject(s)
Climate , Seawater , Temperature , Atmosphere/chemistry , Carbon Dioxide/analysis , Ice Cover , Pacific Ocean , Plankton/chemistry , Seawater/chemistry , Seawater/microbiology , Time Factors
12.
Proc Natl Acad Sci U S A ; 101(25): 9187-92, 2004 Jun 22.
Article in English | MEDLINE | ID: mdl-15197255

ABSTRACT

Past atmospheric methane-concentration oscillations recorded in polar ice cores vary together with rapid global climatic changes during the last glacial episode. In the "clathrate gun hypothesis," massive releases of deep-sea methane from marine gas-hydrate dissociation led to these well known, global, abrupt warmings in the past. If evidence for such releases in the water column exists, however, the mechanism and eventual transfer to the atmosphere has not yet been documented clearly. Here we describe a high-resolution marine-sediment record of stable carbon isotopic changes from the Papua Gulf, off Papua New Guinea, which exhibits two extremely depleted excursions (down to -9 per thousand ) at approximately 39,000 and approximately 55,000 years. Morphological, isotopic, and trace metal evidence dismisses authigenic calcite as the main source of depleted carbon. Massive methane release associated with deep-sea gas-hydrate dissociation is the most likely cause for such large depletions of delta(13)C. The absence of a delta(13)C gradient in the water column during these events implies that the methane rose through the entire water column, reaching the sea-air interface and thus the atmosphere. Foraminiferal delta(18)O composition suggests that the rise of the methane in the water column created an upwelling flow. These inferred emission events suggest that during the last glacial episode, this process was likely widespread, including tropical regions. Thus, the release of methane from the ocean floor into the atmosphere cannot be dismissed as a strong positive feedback in climate dynamics processes.


Subject(s)
Air/analysis , Geologic Sediments/analysis , Methane/analysis , Seawater/analysis , Climate , Ice
SELECTION OF CITATIONS
SEARCH DETAIL
...