Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Drugs ; 61(7): 919-42, 2001.
Article in English | MEDLINE | ID: mdl-11434449

ABSTRACT

Rapacuronium bromide (rapacuronium; ORG-9487) is a nondepolarising muscle relaxant (NMBA) with a low potency [90% effective dose (ED90) 1 mg/kg], which to some extent is responsible for its rapid onset of action. Because of the high plasma clearance (5.3 to 11.1 mg/kg/min) of rapacuronium, its clinical duration of action following single bolus doses up to 2 mg/kg in adults is short (i.e. <20 minutes). Rapacuronium forms a pharmacologically active 3-desacetyl metabolite, ORG-9488, which may contribute to a delay in spontaneous recovery after repeat bolus doses or infusions. After rapacuronium 1.5 mg/kg clinically acceptable intubating conditions are achieved within 60 to 90 seconds in the majority of adult and elderly patients undergoing elective anaesthesia. However, in a rapid-sequence setting. intubating conditions are less favourable after rapacuronium 1.5 to 2.5 mg/kg than after succinylcholine. The most prominent adverse effects of rapacuronium (tachycardia, hypotension and bronchospasm) are dose-related, and in particular pulmonary adverse effects are observed more frequently under conditions of a rapid-sequence induction in adults. Therefore, it seems worthwhile to consider only doses of rapacuronium < or = 1.5 mg/kg to facilitate rapid tracheal intubation, and to use succinylcholine or rocuronium rather than rapacuronium in a rapid-sequence setting. Rapacuronium, however, is a suitable alternative to mivacurium chloride (mivacurium) and succinylcholine for short procedures (e.g. ambulatory anaesthesia). Rocuronium bromide (rocuronium) is a relatively low-potent, intermediateacting NMBA. Its main advantage is the rapid onset of neuromuscular block whereby good or excellent intubating conditions are achieved within 60 to 90 seconds after rocuronium 0.6 mg/kg (2 x ED95), and within 60 to 180 seconds after smaller doses (1 to 1.5 x ED95). Larger doses of rocuronium (> or = 1 mg/kg) seem to be suitable for rapid-sequence induction under relatively light anaesthesia. However, it is still a matter of controversy whether, in the case of an unanticipated difficult intubation, the long duration of rocuronium administered in such large doses outweighs the many adverse effects of succinylcholine. Rocuronium has mild vagolytic effects and does not release histamine, even when administered in large doses. Rocuronium is primarily eliminated via the liver and its pharmacokinetic profile is similar to that of vecuronium bromide (vecuronium). Unlike vecuronium, rocuronium has no metabolite. Cisatracurium besilate (cisatracurium), the IR-cis, 1'R-cis isomer of atracurium besilate (atracurium) is approximately 4 times more potent than atracurium. The onset time of cisatracurium is significantly slower than after equipotent doses of atracurium. The recommended intubating dose is 0.15 to 0.2 mg/kg (3 to 4 times ED95). Over a wide range of clinically relevant doses the recovery properties of cisatracurium are affected by neither the size of the bolus dose nor by the duration of infusion. Unlike atracurium, cisatracurium does not trigger histamine release. Like atracurium, cisatracurium undergoes Hofmann elimination. In contrast to atracurium, cisatracurium does not undergo hydrolysis by nonspecific plasma esterases. Moreover, about 77% of the drug is cleared by organ-dependent mechanisms.


Subject(s)
Androstanols , Atracurium , Atracurium/analogs & derivatives , Neuromuscular Nondepolarizing Agents , Vecuronium Bromide , Vecuronium Bromide/analogs & derivatives , Adult , Aged , Androstanols/adverse effects , Androstanols/pharmacokinetics , Androstanols/pharmacology , Androstanols/therapeutic use , Animals , Atracurium/adverse effects , Atracurium/pharmacokinetics , Atracurium/therapeutic use , Child , Dose-Response Relationship, Drug , Half-Life , Hemodynamics/drug effects , Humans , Infant , Neuromuscular Blockade , Neuromuscular Nondepolarizing Agents/adverse effects , Neuromuscular Nondepolarizing Agents/pharmacokinetics , Neuromuscular Nondepolarizing Agents/pharmacology , Rocuronium , Vecuronium Bromide/adverse effects , Vecuronium Bromide/pharmacokinetics , Vecuronium Bromide/pharmacology , Vecuronium Bromide/therapeutic use
2.
Anesthesiology ; 94(2): 270-9, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11176092

ABSTRACT

BACKGROUND: Hypothermia prolongs the time course of action of nondepolarizing muscle relaxants. It is not known whether this prolongation is caused by a reduced rate of extrahepatic distribution or elimination, liver uptake, metabolic clearance, or biliary excretion. Therefore, the authors studied the effects of hypothermia on the net hepatic uptake, metabolism, and biliary excretion of vecuronium in isolated perfused rat liver. METHODS: Livers of Wistar rats were perfused with Krebs Ringer solution (1% albumin, 3.3% carbon dioxide in oxygen, pH 7.36-7.42, 38 degrees C). Each perfusion experiment (recirculatory perfusion system) was divided into three phases. In phase 1, a bolus dose of vecuronium (950 microg) was followed by a continuous infusion of vecuronium (63 microg/min) throughout the perfusion experiment. In phase 2, the temperature was reduced to 28 degrees C. In phase 3, temperature was restored. In controls, the temperature was kept constant throughout the perfusion. Concentrations of vecuronium and its metabolites were measured in perfusion medium, bile, and liver homogenate. Parameters of a multicompartmental liver model were fitted to the concentration patterns in perfusion medium and in bile. RESULTS: Hypothermia increased vecuronium concentrations in the perfusion medium from 4.0 microg/ml (range, 2.5-6.6) to 15.6 microg/ml (11.5-18.4 microg/ml; P = 0.018). Hypothermia reduced the biliary excretion rate of 3-desacetyl vecuronium from 18% (range, 6-37%) to 16% (range, 4-19%) of that of vecuronium (P = 0.018). Pharmacokinetic analysis confirmed that hypothermia reduced the rate constants of hepatic uptake and metabolism from 0.219 to 0.053 and from 0.059 to 0.030, respectively. CONCLUSIONS: Hypothermia significantly and reversibly reduced the net hepatic uptake of vecuronium. Hypothermia reduced the metabolism of vecuronium and the biliary excretion rate of 3-desacetyl vecuronium.


Subject(s)
Bile/metabolism , Hypothermia, Induced , Liver/metabolism , Neuromuscular Nondepolarizing Agents/pharmacokinetics , Vecuronium Bromide/pharmacokinetics , Animals , Hydrolysis , Male , Perfusion , Rats , Rats, Wistar , Temperature
4.
J Pharmacokinet Biopharm ; 27(2): 173-90, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10567954

ABSTRACT

In pharmacokinetic/pharmacodynamic (PK/PD) modeling the first blood sample is usually taken 1 to 2 min after drug administration (late sampling). Therefore, investigators have to extrapolate the plasma concentration to Time 0. Extrapolation, however, erroneously assumes instantaneous and complete mixing of drug in the central volume of distribution. We investigated whether plasma concentrations obtained from early arterial blood sampling would improve PK/PD modeling. In 14 pigs, one of five neuromuscular blocking agents (NMBAs) was administered into the right ventricle within 1 sec and arterial sampling was performed every 1.2 sec (1st min). The response of the tibialis muscle was measured mechanomyographically. The influence of inclusion of data from early arterial sampling on PK/PD modeling was determined. Furthermore, the concentrations in the effect compartment at 50% block (EC50) derived from modeling were compared to the measured concentration in plasma during a steady state 50% block. A very high peak in arterial plasma concentration was seen within 20 sec after administration of the NMBA. Extensive modeling revealed that plasma concentrations obtained from early arterial blood sampling improve PK/PD modeling. Independent of the type of modeling, the EC50 and KeO based on data sets that include early arterial blood sampling were, for all five NMBAs, significantly higher and lower respectively, than those based on data sets obtained from late sampling. Early arterial sampling shows that the mixing of the NMBA in the central volume of distribution is incomplete. A parametric PD (sigmoid Emax) model could not describe the time course of effect of the NMBAs adequately.


Subject(s)
Pharmaceutical Preparations/analysis , Pharmacokinetics , Plasma/chemistry , Animals , Arteries/physiology , Femoral Artery/physiology , Heart Ventricles , Injections , Male , Models, Biological , Models, Statistical , Neuromuscular Blocking Agents/administration & dosage , Neuromuscular Blocking Agents/blood , Neuromuscular Blocking Agents/pharmacokinetics , Statistics, Nonparametric , Swine
5.
Anesthesiology ; 90(2): 477-83, 1999 Feb.
Article in English | MEDLINE | ID: mdl-9952155

ABSTRACT

BACKGROUND: It is not known whether the lungs influence the early pharmacokinetics of muscle relaxants and, if they do, whether differences in pulmonary uptake contribute to the differences in potency and/or onset time among muscle relaxants. Because the lungs are uniquely positioned, receive the entire cardiac output, have a large capillary surface area, and can temporarily store various basic drugs, the authors determined whether substantial pulmonary first-pass uptake of muscle relaxants occurs. METHODS: In 14 pigs, rocuronium, vecuronium, Org 9487, Org 7617, or d-tubocurarine were administered simultaneously with indocyanin green within 1 s into the right ventricle, and then arterial blood was sampled every 1.2 s (in the first min). The tibialis muscle response was registered mechanomyographically. RESULTS: The maximum block was 93% (68-100% [median and range]). Onset times ranged from 83 s (78-86 s) for rocuronium to 182 s (172-192 s) for d-tubocurarine. Fraction-versus-time outflow curves showed that the peak of muscle relaxants and indocyanin green occurred almost simultaneously. Pulmonary first-pass retention was negligible. The retention of muscle relaxants at 95% passage of indocyanin green was -9% (-31 to 18%). The difference in the mean transit time between muscle relaxant and indocyanin green was 1.0 (0.8 to 1.4), 0.2 (-0.8 to 0.3), 0.3 (0.2 to 0.4), 0.5 (0.2 to 1.3), and -2.2 s for rocuronium, vecuronium, Org 9487, Org 7617, and d-tubocurarine, respectively. CONCLUSIONS: There is no substantial pulmonary first-pass uptake of rocuronium, vecuronium, Org 9487, Org 7617, or d-tubocurarine in pigs. Therefore, differences in pulmonary first-pass uptake do not contribute to the differences in potency and/or onset time among muscle relaxants.


Subject(s)
Lung/metabolism , Neuromuscular Nondepolarizing Agents/administration & dosage , Neuromuscular Nondepolarizing Agents/pharmacokinetics , Androstanols/administration & dosage , Androstanols/pharmacokinetics , Animals , Lung/drug effects , Rocuronium , Swine , Tubocurarine/administration & dosage , Tubocurarine/pharmacokinetics , Vecuronium Bromide/administration & dosage , Vecuronium Bromide/analogs & derivatives , Vecuronium Bromide/pharmacokinetics
6.
Anesthesiology ; 89(3): 707-14, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9743409

ABSTRACT

BACKGROUND: The factors that influence the onset time of submaximal (<100%) neuromuscular block are not fully known. The authors hypothesized that differences in the rate of decrease in the plasma concentration result in differences in the rate of equilibration between plasma and biophase and thus in different onset times. If this hypothesis is valid, inhibition of the enzymic degradation of muscle relaxants should increase the onset time of neuromuscular block. METHODS: Twenty pigs received either suxamethonium or mivacurium. Dose finding (70% block) was done for each pig. The enzymic degradation of the muscle relaxant was randomly inhibited by selective inhibition of plasma cholinesterase activity by tetraisopropyl pyrophosphoramide (10 pigs) or was not inhibited (10 pigs). Plasma cholinesterase activities and the mechanomyographic muscle response after peroneal nerve stimulation (0.1 Hz) were measured. RESULTS: Inhibition of plasma cholinesterase activity (by 93% and 89%, respectively) increased the onset time of suxamethonium from a median of 40 s (range, 20-45 s) to 131 s (range, 114-166 s; P = 0.009) and of mivacurium from a median of 52 s (range, 40-59 s) to 105 s (range, 90-125 s; P = 0.009). Inhibition of degradation decreased the effective dose of suxamethonium that resulted in 70% depression of the initial twitch height from 900 microg/kg (range, 400-1,000 microg/kg) to 150 microg/kg (range, 135-150 microg/kg) and of mivacurium from 100 microg/kg (range, 80-150 microg/kg) to 35 microg/kg (range, 20-50 microg/kg). CONCLUSIONS: Inhibition of the enzymic degradation of suxamethonium and mivacurium increases the onset time of submaximal neuromuscular block. Therefore, pharmacokinetics influence the onset time of submaximal neuromuscular block. These results imply that to obtain an ultrashort onset time, muscle relaxants should be developed that not only have a low affinity for the receptor but also rapidly disappear from plasma.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Isoquinolines/metabolism , Neuromuscular Depolarizing Agents/metabolism , Neuromuscular Junction/drug effects , Neuromuscular Nondepolarizing Agents/metabolism , Succinylcholine/metabolism , Tetraisopropylpyrophosphamide/pharmacology , Animals , Cholinesterases/blood , Isoquinolines/pharmacology , Male , Mivacurium , Succinylcholine/pharmacology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...