Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Occup Environ Hyg ; 9(8): 491-501, 2012.
Article in English | MEDLINE | ID: mdl-22715930

ABSTRACT

This study was conducted to evaluate the physical/mechanical characteristics of typical selected mining tasks and the energy expenditure required for their performance. The study comprised two phases designed to monitor and record the typical activities that miners perform and to measure the metabolic energy expenditure and thermal responses during the performance of these activities under a non-heat stress environmental condition (ambient air temperature of 25.8°C and 61% relative humidity with a wet bulb globe temperature (WBGT) of 22.0°C). Six common mining jobs were evaluated in 36 miners: (1) production drilling (jumbo drill) (n = 3), (2) production ore transportation (load-haul dump vehicle) (n = 4), (3) manual bolting (n = 9), (4) manual shotcrete (wet/dry) (n = 3), (5) general services (n = 8) and, (6) conventional mining (long-hole drill) (n = 9). The time/motion analysis involved the on-site monitoring, video recording, and mechanical characterization of the different jobs. During the second trial, continuous measurement of oxygen consumption was performed with a portable metabolic system. Core (ingestible capsule) and skin temperatures (dermal patches) were recorded continuously using a wireless integrated physiological monitoring system. We found that general services and manual bolting demonstrated the highest mean energy expenditure (331 ± 98 and 290 ± 95 W, respectively) as well as the highest peak work rates (513 and 529 W, respectively). In contrast, the lowest mean rate of energy expenditure was measured in conventional mining (221 ± 44 W) and manual shotcrete (187 ± 77 W) with a corresponding peak rate of 295 and 276 W, respectively. The low rate of energy expenditure recorded for manual shotcrete was paralleled by the lowest work to rest ratio (1.8:1). While we found that production drilling had a moderate rate of energy expenditure (271 ± 11 W), it was associated with the highest work to rest ratio (6.7:1) Despite the large inter-variability in energy expenditure and work intervals among jobs, only small differences in average core temperature (average ranged between 37.20 ± 0.22 to 37.42 ± 0.18°C) were measured. We found a high level of variability in the duration and intensity of tasks performed within each mining job. This was paralleled by a large variation in the work to rest allocation and mean energy expenditure over the course of the work shift.


Subject(s)
Coal Mining , Energy Metabolism/physiology , Environmental Monitoring/methods , Heat-Shock Response/physiology , Oxygen Consumption/physiology , Work/physiology , Adult , Canada , Female , Heat Stress Disorders/physiopathology , Hot Temperature , Humans , Humidity , Male , Middle Aged , Stress, Physiological
2.
Gait Posture ; 27(4): 564-71, 2008 May.
Article in English | MEDLINE | ID: mdl-17825566

ABSTRACT

The activity of descending stairs increases loading at the joints of the lower extremities as compared to walking, which may cause discomfort and or difficulties in completing the task. This study compared and contrasted the kinematics and kinetics of both forwards and backwards stair descent to those of level walking. We compared the support moments and moment powers of the lower limb joints while descending stairs forwards at a self-selected pace, backwards at a self-selected pace and forwards at the same pace as backwards. Participants were 10 healthy young adults (6 men and 4 women) aged 20-35 years. Sagittal plane kinematics and ground reaction forces were collected and moments of force computed using inverse dynamics. The ratio of stance/swing phase changed from 59:41 for normal level walking to between 65:35 and 70:30 for forward stair descent but backwards descent was 58:42. Stair descent produced larger double-peak support moments with reduced ankle plantar flexor and increased knee extensor moments as compared to level walking (>+/-95th-percentile confidence interval). The hip moments during stair descent were relatively small and highly variable. We observed significantly larger distances between the centres of pressure and the stair edges for backwards stair descent versus forwards stair descent. These results demonstrate that stair descent, even at a slower pace, requires greater power from the knee extensors than level walking but that backwards stair descent significantly reduced the peak knee power during midstance and provided a potentially safer means of descending stairs than forwards stair descent.


Subject(s)
Gait/physiology , Lower Extremity/physiology , Walking/physiology , Adult , Analysis of Variance , Ankle/physiology , Biomechanical Phenomena , Female , Hip/physiology , Humans , Knee/physiology , Male
SELECTION OF CITATIONS
SEARCH DETAIL