Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38389482

ABSTRACT

Therapeutic drug monitoring (TDM) involves measuring and interpreting drug concentrations in biological fluids to adjust drug dosages. In onco-hematology, TDM guidelines for oral molecular targeted therapies (oMTTs) are varied. This study evaluates a quantitative approach with a score to predict the clinical usefulness of TDM for oMTTs. We identified key parameters for an oMTT's suitability for TDM from standard TDM recommendations. We gathered oMTT pharmacological data, which covered exposure variability (considering pharmacokinetic (PK) impact of food and proton pump inhibitors), technical intricacy (PK linearity and active metabolites), efficacy (exposure-response relationship), and safety (maximum tolerated dose, and exposure-safety relationship). To assess the validity and the relevance of the score and define relevant thresholds, we evaluated molecules with prospective validation or strong recommendations for TDM, both in oncology and in other fields. By September 1, 2021, the US Food and Drug Administration (FDA) approved 67 oMTTs for onco-hematological indications. Scores ranged from 15 (acalabrutinib) to 80 (sunitinib) with an average of 48.3 and a standard deviation of 15.6. Top scorers included sunitinib, sorafenib, cabozantinib, nilotinib, and abemaciclib. Based on scores, drugs were categorized into low (< 40), intermediate (≥ 40 and < 60), and high (≥ 60) relevance for TDM. Notably, negative controls generally scored around or under 40, whereas positive controls had a high score across different indications. In this work, we propose a quantitative and reproducible score to compare the potential usefulness of TDM for oMTTs. Future guidelines should prioritize the TDM for molecules with the highest score.

2.
J Pharm Biomed Anal ; 236: 115730, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37734255

ABSTRACT

INTRODUCTION: Belimumab is a monoclonal antibody against B cell activating factor (BLyS). This monoclonal antibody (mAb) has been shown to be effective in reducing disease activity in patients with systemic lupus erythematosus (SLE). Belimumab is available in two forms as a lyophilized powder for intravenous (IV) use, or single-dose syringe for subcutaneous (SC) use. The aim of this study was to develop and validate a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantitation of belimumab in human serum. MATERIAL AND METHODS: All analyses relied on nano-surface and molecular-orientation limited (nSMOL) proteolysis coupled with LC-MS/MS. Quantifications was performed in multiple reactions monitoring (MRM) mode, and electrospray ionization was conducted in positive mode. RESULTS: Belimumab was quantified with signature peptide QAPGQGLEWMGGIPFGTAK and normalized using P14R. The total run time per assay was 10 min. Linearity was measured from 5 to 800 µg/mL (r² > 0.995). Accuracy and precision based on three quality control levels range from 11.2 - 9.51 % and 1.24 - 13.12 % respectively. The carryover was less than 7 %. In all, 87 patient samples were processed (65, IV; 22, SC). Mean concentration of belimumab was significantly higher for SC (93.0 ± 74.0 µg/mL) than for IV (67.4 ± 38.9 µg/mL) administration. CONCLUSION: We have developed the first method of belimumab quantification combining LC-MS/MS and nSMOL proteolysis. It can be used for future clinical pharmacokinetic studies of belimumab and for investigating the relationship between belimumab concentration, efficacy, and toxicity in SLE patients.

3.
Eur J Clin Pharmacol ; 78(6): 1003-1010, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35294622

ABSTRACT

INTRODUCTION: Mycophenolate mofetil (MMF), a pro-drug of mycophenolic acid (MPA), has become a major therapeutic option in juvenile systemic lupus erythematosus (jSLE). Monitoring MPA exposure using area under curve (AUC) has proved its value to increase efficacy and safety in solid organ transplantation both in children and adults, but additional data are required in patients with autoimmune diseases. In order to facilitate MMF therapeutic drug monitoring (TDM) in children, Bayesian estimators (BE) of MPA AUC0-12 h using limited sampling strategies (LSS) have been developed. Our aim was to conduct an external validation of these LSS using rich pharmacokinetics and compare their predictive performance. METHODS: Pharmacokinetic blood samples were collected from jSLE treated by MMF and MPA plasma concentrations were determined using high-performance liquid chromatography system with ultraviolet detection (HPLC-UV). Individual AUC0-12 h at steady state was calculated using the trapezoid rule and compared with two LSS: (1) ISBA, a two-stage Bayesian approach developed for jSLE and (2) ADAPT, a non-linear mixed effects model with a parametric maximum likelihood approach developed with data from renal transplanted adults. RESULTS: We received 41 rich pediatric PK at steady state from jSLE and calculated individual AUC0-12 h. The external validation MPA AUC0-12 h was conducted by selecting the concentration-time points adapted to ISBA and ADAPT: (1) ISBA showed good accuracy (bias: - 0.8 mg h/L), (2) ADAPT resulted in a bias of 6.7 mg L/h. The corresponding relative root mean square prediction error (RSME) was 23% and 43% respectively. CONCLUSION: According to our external validation of two LSS of drug exposure, the ISBA model is recommended for Bayesian estimation of MPA AUC0-12 h in jSLE. In the literature focusing on MMF TDM, an efficacy cut-off for MPA AUC0-12 h between 30 and 45 mg h/L is proposed in jSLE but this requires additional validation.


Subject(s)
Lupus Erythematosus, Systemic , Mycophenolic Acid , Adult , Area Under Curve , Bayes Theorem , Child , Drug Monitoring/methods , Humans , Immunosuppressive Agents/pharmacokinetics , Likelihood Functions , Lupus Erythematosus, Systemic/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...