Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 21(4): 576-588, 2018 04.
Article in English | MEDLINE | ID: mdl-29556028

ABSTRACT

Severe spinal cord contusions interrupt nearly all brain projections to lumbar circuits producing leg movement. Failure of these projections to reorganize leads to permanent paralysis. Here we modeled these injuries in rodents. A severe contusion abolished all motor cortex projections below injury. However, the motor cortex immediately regained adaptive control over the paralyzed legs during electrochemical neuromodulation of lumbar circuits. Glutamatergic reticulospinal neurons with residual projections below the injury relayed the cortical command downstream. Gravity-assisted rehabilitation enabled by the neuromodulation therapy reinforced these reticulospinal projections, rerouting cortical information through this pathway. This circuit reorganization mediated a motor cortex-dependent recovery of natural walking and swimming without requiring neuromodulation. Cortico-reticulo-spinal circuit reorganization may also improve recovery in humans.


Subject(s)
Motor Cortex/physiology , Recovery of Function/physiology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Spinal Cord/physiology , Vestibular Nucleus, Lateral/physiology , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Brain/anatomy & histology , Brain/drug effects , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Cortex/drug effects , Psychomotor Performance/drug effects , Quipazine/pharmacology , Rats , Rats, Inbred Lew , Recovery of Function/drug effects , Recovery of Function/genetics , Serotonin Receptor Agonists/pharmacology , Spinal Cord/drug effects , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/drug therapy , Thy-1 Antigens/administration & dosage , Thy-1 Antigens/genetics , Thy-1 Antigens/metabolism , Vestibular Nucleus, Lateral/drug effects
2.
J Neurosci ; 36(40): 10440-10455, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27707977

ABSTRACT

Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. SIGNIFICANCE STATEMENT: We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship emphasizes the importance of the behavioral procedure to engage the motor cortex during motor control studies, gait rehabilitation, and locomotor neuroprosthetic developments in rats.


Subject(s)
Hindlimb/innervation , Hindlimb/physiology , Locomotion/physiology , Motor Cortex/physiology , Animals , Behavior, Animal/physiology , Biomechanical Phenomena , Electromyography , Female , Gait/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Neural Pathways/physiology , Pyramidal Tracts/cytology , Pyramidal Tracts/physiology , Rats , Rats, Inbred Lew
3.
Neurosci Res ; 78: 21-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24135130

ABSTRACT

In this conceptual review, we highlight our strategy for, and progress in the development of corticospinal neuroprostheses for restoring locomotor functions and promoting neural repair after thoracic spinal cord injury in experimental animal models. We specifically focus on recent developments in recording and stimulating neural interfaces, decoding algorithms, extraction of real-time feedback information, and closed-loop control systems. Each of these complex neurotechnologies plays a significant role for the design of corticospinal neuroprostheses. Even more challenging is the coordinated integration of such multifaceted technologies into effective and practical neuroprosthetic systems to improve movement execution, and augment neural plasticity after injury. In this review we address our progress in rodent animal models to explore the viability of a technology-intensive strategy for recovery and repair of the damaged nervous system. The technical, practical, and regulatory hurdles that lie ahead along the path toward clinical applications are enormous - and their resolution is uncertain at this stage. However, it is imperative that the discoveries and technological developments being made across the field of neuroprosthetics do not stay in the lab, but instead reach clinical fruition at the fastest pace possible.


Subject(s)
Locomotion/physiology , Neural Prostheses , Pyramidal Tracts/physiopathology , Recovery of Function/physiology , Spinal Cord Injuries/rehabilitation , Animals , Brain/physiology , Brain-Computer Interfaces , Electric Stimulation Therapy/methods , Humans , Neuronal Plasticity , Rats , Thoracic Vertebrae
4.
J Neurosci ; 33(49): 19326-40, 2013 Dec 04.
Article in English | MEDLINE | ID: mdl-24305828

ABSTRACT

Epidural electrical stimulation (EES) of lumbosacral segments can restore a range of movements after spinal cord injury. However, the mechanisms and neural structures through which EES facilitates movement execution remain unclear. Here, we designed a computational model and performed in vivo experiments to investigate the type of fibers, neurons, and circuits recruited in response to EES. We first developed a realistic finite element computer model of rat lumbosacral segments to identify the currents generated by EES. To evaluate the impact of these currents on sensorimotor circuits, we coupled this model with an anatomically realistic axon-cable model of motoneurons, interneurons, and myelinated afferent fibers for antagonistic ankle muscles. Comparisons between computer simulations and experiments revealed the ability of the model to predict EES-evoked motor responses over multiple intensities and locations. Analysis of the recruited neural structures revealed the lack of direct influence of EES on motoneurons and interneurons. Simulations and pharmacological experiments demonstrated that EES engages spinal circuits trans-synaptically through the recruitment of myelinated afferent fibers. The model also predicted the capacity of spatially distinct EES to modulate side-specific limb movements and, to a lesser extent, extension versus flexion. These predictions were confirmed during standing and walking enabled by EES in spinal rats. These combined results provide a mechanistic framework for the design of spinal neuroprosthetic systems to improve standing and walking after neurological disorders.


Subject(s)
Epidural Space/physiology , Models, Neurological , Motor Neurons/physiology , Sensory Receptor Cells/physiology , Spinal Cord/physiology , Algorithms , Animals , Computer Simulation , Electric Stimulation , Electrodes, Implanted , Electrophysiological Phenomena/physiology , Female , Finite Element Analysis , Interneurons/physiology , Nerve Fibers/physiology , Rats , Rats, Inbred Lew , Recruitment, Neurophysiological/physiology , Spinal Cord/cytology , Walking/physiology
5.
Brain ; 136(Pt 11): 3347-61, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24080153

ABSTRACT

Severe spinal cord injury in humans leads to a progressive neuronal dysfunction in the chronic stage of the injury. This dysfunction is characterized by premature exhaustion of muscle activity during assisted locomotion, which is associated with the emergence of abnormal reflex responses. Here, we hypothesize that undirected compensatory plasticity within neural systems caudal to a severe spinal cord injury contributes to the development of neuronal dysfunction in the chronic stage of the injury. We evaluated alterations in functional, electrophysiological and neuromorphological properties of lumbosacral circuitries in adult rats with a staggered thoracic hemisection injury. In the chronic stage of the injury, rats exhibited significant neuronal dysfunction, which was characterized by co-activation of antagonistic muscles, exhaustion of locomotor muscle activity, and deterioration of electrochemically-enabled gait patterns. As observed in humans, neuronal dysfunction was associated with the emergence of abnormal, long-latency reflex responses in leg muscles. Analyses of circuit, fibre and synapse density in segments caudal to the spinal cord injury revealed an extensive, lamina-specific remodelling of neuronal networks in response to the interruption of supraspinal input. These plastic changes restored a near-normal level of synaptic input within denervated spinal segments in the chronic stage of injury. Syndromic analysis uncovered significant correlations between the development of neuronal dysfunction, emergence of abnormal reflexes, and anatomical remodelling of lumbosacral circuitries. Together, these results suggest that spinal neurons deprived of supraspinal input strive to re-establish their synaptic environment. However, this undirected compensatory plasticity forms aberrant neuronal circuits, which may engage inappropriate combinations of sensorimotor networks during gait execution.


Subject(s)
Nerve Net/physiopathology , Neuronal Plasticity/physiology , Severity of Illness Index , Spinal Cord Injuries/physiopathology , Spinal Cord/physiopathology , Animals , Disease Models, Animal , Electric Stimulation , Electrodes, Implanted , Exercise Test , Female , Hindlimb/physiopathology , Muscle, Skeletal/physiopathology , Rats , Spinal Cord/cytology , Spinal Cord Injuries/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...