Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Oncol ; 34(3): 300-314, 2023 03.
Article in English | MEDLINE | ID: mdl-36494005

ABSTRACT

BACKGROUND: New precision medicine therapies are urgently required for glioblastoma (GBM). However, to date, efforts to subtype patients based on molecular profiles have failed to direct treatment strategies. We hypothesised that interrogation of the GBM tumour microenvironment (TME) and identification of novel TME-specific subtypes could inform new precision immunotherapy treatment strategies. MATERIALS AND METHODS: A refined and validated microenvironment cell population (MCP) counter method was applied to >800 GBM patient tumours (GBM-MCP-counter). Specifically, partition around medoids (PAM) clustering of GBM-MCP-counter scores in the GLIOTRAIN discovery cohort identified three novel patient clusters, uniquely characterised by TME composition, functional orientation markers and immune checkpoint proteins. Validation was carried out in three independent GBM-RNA-seq datasets. Neoantigen, mutational and gene ontology analysis identified mutations and uniquely altered pathways across subtypes. The longitudinal Glioma Longitudinal AnalySiS (GLASS) cohort and three immunotherapy clinical trial cohorts [treatment with neoadjuvant/adjuvant anti-programmed cell death protein 1 (PD-1) or PSVRIPO] were further interrogated to assess subtype alterations between primary and recurrent tumours and to assess the utility of TME classifiers as immunotherapy biomarkers. RESULTS: TMEHigh tumours (30%) displayed elevated lymphocyte, myeloid cell immune checkpoint, programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 transcripts. TMEHigh/mesenchymal+ patients featured tertiary lymphoid structures. TMEMed (46%) tumours were enriched for endothelial cell gene expression profiles and displayed heterogeneous immune populations. TMELow (24%) tumours were manifest as an 'immune-desert' group. TME subtype transitions upon recurrence were identified in the longitudinal GLASS cohort. Assessment of GBM immunotherapy trial datasets revealed that TMEHigh patients receiving neoadjuvant anti-PD-1 had significantly increased overall survival (P = 0.04). Moreover, TMEHigh patients treated with adjuvant anti-PD-1 or oncolytic virus (PVSRIPO) showed a trend towards improved survival. CONCLUSIONS: We have established a novel TME-based classification system for application in intracranial malignancies. TME subtypes represent canonical 'termini a quo' (starting points) to support an improved precision immunotherapy treatment approach.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Tumor Microenvironment , Neoplasm Recurrence, Local , Immunotherapy/methods , Brain Neoplasms/drug therapy
4.
J Neurooncol ; 137(2): 233-240, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29264834

ABSTRACT

Epigenetic silencing of O-6-methylguanine-DNA methyltransferase (MGMT) promoter via methylation in a glioblastoma (GBM), has been correlated with a more favourable response to alkylating chemotherapeutic agents such as temozolomide. The use of global methylation surrogates such as Long Interspersed Nucleotide Element 1 (LINE1) may also be valuable in order to fully understand these highly heterogeneous tumours. In this study, we analysed both original and recurrent GBMs in 22 patients (i.e. 44 tumours), for both MGMT and LINE1 methylation status. In the 22 patients: 14 (63.6%) displayed MGMT methylation stability in the recurrent GBM versus 8 (36.4%), with instability of methylation status. No significant differences in overall and progression free survival was evident between these two groups. LINE1 methylation status remained stable for 12 (54.5%) of recurrent GBM patients versus 9 (41%) of the patients with instability in LINE1 methylation status (p = 0.02), resulting in an increase in overall survival of the stable LINE1 group (p = 0.04). The results obtained demonstrated major epigenetic instability of GBMs treated with temozolomide as part of the STUPP protocol. GBMs appear to undergo selective evolution post-treatment, and have the ability to recur with a newly reprogrammed epigenetic status. Selective targeting of the altered epigenomes in recurrent GBMs may facilitate the future development of both prognostic biomarkers and enhanced therapeutic strategies.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/therapy , DNA Methylation , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Glioblastoma/metabolism , Glioblastoma/therapy , Tumor Suppressor Proteins/metabolism , Adult , Aged , Antineoplastic Protocols , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Female , Glioblastoma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Male , Middle Aged , Recurrence , Treatment Outcome , Tumor Suppressor Proteins/genetics , Young Adult
7.
Ir Med J ; 105(9): 307-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23240285

ABSTRACT

Although rare in young patients, acute ischaemic colitis can have devastating consequences. We detail the presentation and clinical course of a severe, progressive case of this disease related temporally to the recent ingestion of a sibutramine-containing herbal slimming agent procured on-line without prescription or medical indication in a young female that ultimately required emergency laparoscopic total colectomy with end ileostomy to prevent end organ failure.


Subject(s)
Colitis, Ischemic/diagnosis , Colitis, Ischemic/surgery , Acute Disease , Colonoscopy/methods , Digestive System Surgical Procedures , Female , Humans , Intestinal Mucosa/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...