Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 6: e4392, 2018.
Article in English | MEDLINE | ID: mdl-29492338

ABSTRACT

Plant diseases caused by fungi and Oomycetes represent worldwide threats to crops and forest ecosystems. Effective prevention and appropriate management of emerging diseases rely on rapid detection and identification of the causal pathogens. The increase in genomic resources makes it possible to generate novel genome-enhanced DNA detection assays that can exploit whole genomes to discover candidate genes for pathogen detection. A pipeline was developed to identify genome regions that discriminate taxa or groups of taxa and can be converted into PCR assays. The modular pipeline is comprised of four components: (1) selection and genome sequencing of phylogenetically related taxa, (2) identification of clusters of orthologous genes, (3) elimination of false positives by filtering, and (4) assay design. This pipeline was applied to some of the most important plant pathogens across three broad taxonomic groups: Phytophthoras (Stramenopiles, Oomycota), Dothideomycetes (Fungi, Ascomycota) and Pucciniales (Fungi, Basidiomycota). Comparison of 73 fungal and Oomycete genomes led the discovery of 5,939 gene clusters that were unique to the targeted taxa and an additional 535 that were common at higher taxonomic levels. Approximately 28% of the 299 tested were converted into qPCR assays that met our set of specificity criteria. This work demonstrates that a genome-wide approach can efficiently identify multiple taxon-specific genome regions that can be converted into highly specific PCR assays. The possibility to easily obtain multiple alternative regions to design highly specific qPCR assays should be of great help in tackling challenging cases for which higher taxon-resolution is needed.

2.
Proc Natl Acad Sci U S A ; 112(11): 3451-6, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25733908

ABSTRACT

Some of the most damaging tree pathogens can attack woody stems, causing lesions (cankers) that may be lethal. To identify the genomic determinants of wood colonization leading to canker formation, we sequenced the genomes of the poplar canker pathogen, Mycosphaerella populorum, and the closely related poplar leaf pathogen, M. populicola. A secondary metabolite cluster unique to M. populorum is fully activated following induction by poplar wood and leaves. In addition, genes encoding hemicellulose-degrading enzymes, peptidases, and metabolite transporters were more abundant and were up-regulated in M. populorum growing on poplar wood-chip medium compared with M. populicola. The secondary gene cluster and several of the carbohydrate degradation genes have the signature of horizontal transfer from ascomycete fungi associated with wood decay and from prokaryotes. Acquisition and maintenance of the gene battery necessary for growth in woody tissues and gene dosage resulting in gene expression reconfiguration appear to be responsible for the adaptation of M. populorum to infect, colonize, and cause mortality on poplar woody stems.


Subject(s)
Adaptation, Physiological/genetics , Ascomycota/growth & development , Ascomycota/genetics , Gene Dosage , Gene Transfer, Horizontal , Trees/microbiology , Wood/microbiology , Ascomycota/pathogenicity , Base Sequence , Colony Count, Microbial , Gene Expression Regulation, Fungal , Genetic Speciation , Genome, Fungal/genetics , Host-Pathogen Interactions/genetics , Indole Alkaloids/metabolism , Molecular Sequence Data , Nitrogen/metabolism , Phylogeny , Populus/microbiology , Proteolysis , Synteny/genetics , Time Factors
3.
Genetics ; 188(1): 197-214, 2011 May.
Article in English | MEDLINE | ID: mdl-21385726

ABSTRACT

Marker-assisted selection holds promise for highly influencing tree breeding, especially for wood traits, by considerably reducing breeding cycles and increasing selection accuracy. In this study, we used a candidate gene approach to test for associations between 944 single-nucleotide polymorphism markers from 549 candidate genes and 25 wood quality traits in white spruce. A mixed-linear model approach, including a weak but nonsignificant population structure, was implemented for each marker-trait combination. Relatedness among individuals was controlled using a kinship matrix estimated either from the known half-sib structure or from the markers. Both additive and dominance effect models were tested. Between 8 and 21 single-nucleotide polymorphisms (SNPs) were found to be significantly associated (P ≤ 0.01) with each of earlywood, latewood, or total wood traits. After controlling for multiple testing (Q ≤ 0.10), 13 SNPs were still significant across as many genes belonging to different families, each accounting for between 3 and 5% of the phenotypic variance in 10 wood characters. Transcript accumulation was determined for genes containing SNPs associated with these traits. Significantly different transcript levels (P ≤ 0.05) were found among the SNP genotypes of a 1-aminocyclopropane-1-carboxylate oxidase, a ß-tonoplast intrinsic protein, and a long-chain acyl-CoA synthetase 9. These results should contribute toward the development of efficient marker-assisted selection in an economically important tree species.


Subject(s)
Gene Expression Regulation, Plant , Genetic Association Studies , Picea/genetics , Quantitative Trait, Heritable , Wood/genetics , Cluster Analysis , Gene Expression Profiling , Genes, Plant/genetics , Genotype , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Population Dynamics , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
BMC Genomics ; 9: 21, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18205909

ABSTRACT

BACKGROUND: To explore the potential value of high-throughput genotyping assays in the analysis of large and complex genomes, we designed two highly multiplexed Illumina bead arrays using the GoldenGate SNP assay for gene mapping in white spruce (Picea glauca [Moench] Voss) and black spruce (Picea mariana [Mill.] B.S.P.). RESULTS: Each array included 768 SNPs, identified by resequencing genomic DNA from parents of each mapping population. For white spruce and black spruce, respectively, 69.2% and 77.1% of genotyped SNPs had valid GoldenGate assay scores and segregated in the mapping populations. For each of these successful SNPs, on average, valid genotyping scores were obtained for over 99% of progeny. SNP data were integrated to pre-existing ALFP, ESTP, and SSR markers to construct two individual linkage maps and a composite map for white spruce and black spruce genomes. The white spruce composite map contained 821 markers including 348 gene loci. Also, 835 markers including 328 gene loci were positioned on the black spruce composite map. In total, 215 anchor markers (mostly gene markers) were shared between the two species. Considering lineage divergence at least 10 Myr ago between the two spruces, interspecific comparison of homoeologous linkage groups revealed remarkable synteny and marker colinearity. CONCLUSION: The design of customized highly multiplexed Illumina SNP arrays appears as an efficient procedure to enhance the mapping of expressed genes and make linkage maps more informative and powerful in such species with poorly known genomes. This genotyping approach will open new avenues for co-localizing candidate genes and QTLs, partial genome sequencing, and comparative mapping across conifers.


Subject(s)
Chromosome Mapping/methods , Genome, Plant , Oligonucleotide Array Sequence Analysis , Picea/genetics , Polymorphism, Single Nucleotide , Chromosomes, Plant , Cluster Analysis , Computational Biology/methods , Crosses, Genetic , DNA Primers/chemistry , DNA, Plant/genetics , DNA, Plant/isolation & purification , Expressed Sequence Tags , Genetic Markers , Genotype , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Reproducibility of Results , Sequence Analysis, DNA , Synteny , Temperature , Time Factors
5.
Theor Appl Genet ; 113(8): 1371-93, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17061103

ABSTRACT

A composite linkage map was constructed from four individual maps for the conifer Picea glauca (Moench) Voss, from anonymous and gene-specific markfers (714 AFLPs, 38 SSRs, and 53 ESTPs). A total of 12 linkage groups were delineated with an average marker density of 2.7 cM. Macro-synteny and macro-colinearity comparisons with two other composite linkage maps developed for the species complex P. mariana (Mill.) B.S.P. x P. rubens Sarg., and for P. abies (L.) Karst. revealed an identical number of linkage groups and a remarkable conservation of the gene content and gene order of linkage groups over the million years since the split between these taxa. Identical gene order among taxa was observed for 10 of the 12 assembled composite linkage groups. The discovery of one breakdown in synteny between P. glauca and the other two taxa indicated the occurrence of an inter-chromosomal rearrangement involving an insertional translocation. Analysis of marker colinearity also revealed a putative segmental duplication. The combined information from these three Picea genomes validated and improved large-scale genome comparisons at the inter-generic level in the family Pinaceae by allowing for the identification of 11 homoeologous linkage groups between Picea and Pinus, and nine such groups between Picea and Pseudotsuga menziesii. Notably, the analysis of synteny among the three genera revealed a putative case of chromosomal fission and an inter-chromosomal rearrangement in the genome of P. menziesii. Both of these changes are inter-connected, indicating much instability in this part of the P. menziesii genome. Overall, the macro-structure of the Pinaceae genome was well conserved, which is notable given the Cretaceous origin of its main lineages.


Subject(s)
Genome, Plant , Physical Chromosome Mapping , Picea/genetics , Pinaceae/genetics , Synteny
6.
Theor Appl Genet ; 111(8): 1466-88, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16215729

ABSTRACT

Four individual linkage maps were constructed from two crosses for the species complex Picea mariana (Mill.) B.S.P. x Picea rubens Sarg in order to integrate their information into a composite map and to compare with other Pinaceae. For all individual linkage maps, 12 major linkage groups were recovered with 306 markers per map on average. Before building the composite linkage map, the common male parent between the two crosses made it possible to construct a reference linkage map to validate the relative position of homologous markers. The final composite map had a length of 2,319 cM (Haldane) and contained a total of 1,124 positioned markers, including 1,014 AFLPs, 3 RAPDs, 53 SSRs, and 54 ESTPs, assembled into 12 major linkage groups. Marker density of the composite map was statistically homogenous and was much higher (one marker every 2.1 cM) than that of the individual linkage maps (one marker every 5.7 to 7.1 cM). Synteny was well conserved between individual, reference, and composite linkage maps and 94% of homologous markers were colinear between the reference and composite maps. The combined information from the two crosses increased by about 24% the number of anchor markers compared to the information from any single cross. With a total number of 107 anchor markers (SSRs and ESTPs), the composite linkage map is a useful starting point for large-scale genome comparisons at the intergeneric level in the Pinaceae. Comparisons of this map with those in Pinus and Pseudotsuga allowed the identification of one breakdown in synteny where one linkage group homologous to both Picea and Pinus corresponded to two linkage groups in Pseudotsuga. Implications for the evolution of the Pinaceae genome are discussed.


Subject(s)
Chromosome Mapping , Picea/genetics , Crosses, Genetic , Genetic Markers/genetics , Minisatellite Repeats/genetics , Nucleic Acid Amplification Techniques , Polymorphism, Restriction Fragment Length , Species Specificity , Synteny/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...