Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 12(12)2022 12 14.
Article in English | MEDLINE | ID: mdl-36551306

ABSTRACT

Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary arterial hypertension (PAH) occurring in a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2, general control nonderepressible 2) or in a sporadic form in older age (sPVOD), following exposure to chemotherapy or organic solvents. In contrast to PAH, PVOD is characterized by a particular remodeling of the pulmonary venous system and the obliteration of small pulmonary veins by fibrous intimal thickening and patchy capillary proliferation. The pathobiological knowledge of PVOD is poor, explaining the absence of medical therapy for PVOD. Lung transplantation remains the only therapy for eligible PVOD patients. As we recently demonstrated, respiratory diseases, chronic obstructive pulmonary disease, or cystic fibrosis exhibit lipointoxication signatures characterized by excessive levels of saturated phospholipids contributing to the pathological features of these diseases, including endoplasmic reticulum stress, pro-inflammatory cytokines production, and bronchoconstriction. In this study, we investigated and compared the clinical data and lung lipid signature of control (10 patients), idiopathic PAH (7 patients), heritable PAH (9 BMPR2 mutations carriers), hPVOD (10 EIF2AK4 mutation carriers), and sPVOD (6 non-carriers) subjects. Mass spectrometry analyses demonstrated lung lipointoxication only in hPVOD patients, characterized by an increased abundance of saturated phosphatidylcholine (PC) at the expense of the polyunsaturated species in the lungs of hPVOD patients. The present data suggest that lipointoxication could be a potential player in the etiology of PVOD.


Subject(s)
Pulmonary Arterial Hypertension , Pulmonary Veno-Occlusive Disease , Humans , Lipidomics , Lung/pathology , Protein Serine-Threonine Kinases/genetics , Pulmonary Arterial Hypertension/pathology , Pulmonary Veins , Pulmonary Veno-Occlusive Disease/genetics , Pulmonary Veno-Occlusive Disease/pathology
2.
Cells ; 11(20)2022 10 18.
Article in English | MEDLINE | ID: mdl-36291148

ABSTRACT

Right ventricular failure (RVF) is the most important prognostic factor for morbidity and mortality in pulmonary arterial hypertension (PAH) or pulmonary hypertension (PH) caused by left heart diseases. However, right ventricle (RV) remodeling is understudied and not targeted by specific therapies. This can be partly explained by the lack of basic knowledge of RV remodeling. Since the physiology and hemodynamic function of the RV differ from those of the left ventricle (LV), the mechanisms of LV dysfunction cannot be generalized to that of the RV, albeit a knowledge of these being helpful to understanding RV remodeling and dysfunction. Store-operated Ca2+ entry (SOCE) has recently emerged to participate in the LV cardiomyocyte Ca2+ homeostasis and as a critical player in Ca2+ mishandling in a pathological context. In this paper, we highlight the current knowledge on the SOCE contribution to the LV and RV dysfunctions, as SOCE molecules are present in both compartments. he relative lack of studies on RV dysfunction indicates the necessity of further investigations, a significant challenge over the coming years.


Subject(s)
Hypertension, Pulmonary , Ventricular Dysfunction, Right , Male , Humans , Heart Ventricles/pathology , Ventricular Remodeling/physiology , Myocytes, Cardiac/pathology
3.
Front Cardiovasc Med ; 9: 1066047, 2022.
Article in English | MEDLINE | ID: mdl-36704469

ABSTRACT

Aims: We hypothesized that the ATP-sensitive K+ channels (KATP) regulatory subunit (ABCC9) contributes to PAH pathogenesis. ABCC9 gene encodes for two regulatory subunits of KATP channels: the SUR2A and SUR2B proteins. In the KATP channel, the SUR2 subunits are associated with the K+ channel Kir6.1. We investigated how the SUR2/Kir6.1 channel contributes to PAH pathogenesis and its potential as a therapeutic target in PAH. Methods and results: Using in vitro, ex vivo, and in vivo approaches, we analyzed the localization and expression of SUR2A, SUR2B, and Kir6.1 in the pulmonary vasculature of controls and patients with PAH as in experimental pulmonary hypertension (PH) rat models and its contribution to PAH physiopathology. Finally, we deciphered the consequences of in vivo activation of SUR2/Kir6.1 in the monocrotaline (MCT)-induced PH model. We found that SUR2A, SUR2B, and Kir6.1 were expressed in the lungs of controls and patients with PAH and MCT-induced PH rat models. Organ bath studies showed that SUR2 activation by pinacidil induced relaxation of pulmonary arterial in rats and humans. In vitro experiments on human pulmonary arterial smooth muscle cells and endothelial cells (hPASMCs and hPAECs) in controls and PAH patients showed decreased cell proliferation and migration after SUR2 activation. We demonstrated that SUR2 activation in rat right ventricular (RV) cardiomyocytes reduced RV action potential duration by patch-clamp. Chronic pinacidil administration in control rats increased heart rate without changes in hemodynamic parameters. Finally, in vivo pharmacological activation of SUR2 on MCT and Chronic-hypoxia (CH)-induced-PH rats showed improved PH. Conclusion: We showed that SUR2A, SUR2B, and Kir6.1 are presented in hPASMCs and hPAECs of controls and PAH patients. In vivo SUR2 activation reduced the MCT-induced and CH-induced PH phenotype, suggesting that SUR2 activation should be considered for treating PAH.

SELECTION OF CITATIONS
SEARCH DETAIL
...