Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
J Pharmacol Exp Ther ; 377(2): 293-304, 2021 05.
Article in English | MEDLINE | ID: mdl-33602875

ABSTRACT

In failing hearts, Na+/Ca2+ exchanger (NCX) overactivity contributes to Ca2+ depletion, leading to contractile dysfunction. Inhibition of NCX is expected to normalize Ca2+ mishandling, to limit afterdepolarization-related arrhythmias, and to improve cardiac function in heart failure (HF). SAR340835/SAR296968 is a selective NCX inhibitor for all NCX isoforms across species, including human, with no effect on the native voltage-dependent calcium and sodium currents in vitro. Additionally, it showed in vitro and in vivo antiarrhythmic properties in several models of early and delayed afterdepolarization-related arrhythmias. Its effect on cardiac function was studied under intravenous infusion at 250,750 or 1500 µg/kg per hour in dogs, which were either normal or submitted to chronic ventricular pacing at 240 bpm (HF dogs). HF dogs were infused with the reference inotrope dobutamine (10 µg/kg per minute, i.v.). In normal dogs, NCX inhibitor increased cardiac contractility (dP/dtmax) and stroke volume (SV) and tended to reduce heart rate (HR). In HF dogs, NCX inhibitor significantly and dose-dependently increased SV from the first dose (+28.5%, +48.8%, and +62% at 250, 750, and 1500 µg/kg per hour, respectively) while significantly increasing dP/dtmax only at 1500 (+33%). Furthermore, NCX inhibitor significantly restored sympathovagal balance and spontaneous baroreflex sensitivity (BRS) from the first dose and reduced HR at the highest dose. In HF dogs, dobutamine significantly increased dP/dtmax and SV (+68.8%) but did not change HR, sympathovagal balance, or BRS. Overall, SAR340835, a selective potent NCX inhibitor, displayed a unique therapeutic profile, combining antiarrhythmic properties, capacity to restore systolic function, sympathovagal balance, and BRS in HF dogs. NCX inhibitors may offer new therapeutic options for acute HF treatment. SIGNIFICANCE STATEMENT: HF is facing growing health and economic burden. Moreover, patients hospitalized for acute heart failure are at high risk of decompensation recurrence, and no current acute decompensated HF therapy definitively improved outcomes. A new potent, Na+/Ca2+ exchanger inhibitor SAR340835 with antiarrhythmic properties improved systolic function of failing hearts without creating hypotension, while reducing heart rate and restoring sympathovagal balance. SAR340835 may offer a unique and attractive pharmacological profile for patients with acute heart failure as compared with current inotrope, such as dobutamine.


Subject(s)
Heart Failure/drug therapy , Membrane Transport Modulators/therapeutic use , Sodium-Calcium Exchanger/antagonists & inhibitors , Vagus Nerve/drug effects , Animals , Baroreflex , Dogs , Heart/drug effects , Heart Rate , Membrane Transport Modulators/administration & dosage , Membrane Transport Modulators/pharmacology , Myocardial Contraction , Myocardium/metabolism , Swine
3.
FEBS Open Bio ; 10(10): 2010-2020, 2020 10.
Article in English | MEDLINE | ID: mdl-32810927

ABSTRACT

Sphingosine-1 phosphate receptor-1 (S1P1 ) activation maintains endothelial barrier integrity, whereas S1P1 desensitization induces peripheral blood lymphopenia. The latter is exploited in the approval and/or late-stage development of receptor-desensitizing agents targeting the S1P1 receptor in multiple sclerosis, such as siponimod, ozanimod, and ponesimod. SAR247799 is a recently described G protein-biased S1P1 agonist that activates S1P1 without desensitization and thus has endothelial-protective properties in patients without reducing lymphocytes. As SAR247799 demonstrated endothelial-protective effects at sub-lymphocyte-reducing doses, the possibility exists that other S1P1 modulators could also exhibit endothelial-protective properties at lower doses. To explore this possibility, we sought to quantitatively compare the biased properties of SAR247799 with the most advanced clinical molecules targeting S1P1 . In this study, we define the ß-arrestin pathway component of the impedance profile following S1P1 activation in a human umbilical vein endothelial cell line (HUVEC) and report quantitative indices of the S1P1 activation-to-desensitization ratio of various clinical molecules. In a label-free impedance assay assessing endothelial barrier integrity and disruption, the mean estimates (95% confidence interval) of the activation-to-desensitization ratios of SAR247799, ponesimod, ozanimod, and siponimod were 114 (91.1-143), 7.66 (3.41-17.2), 6.35 (3.21-12.5), and 0.170 (0.0523-0.555), respectively. Thus, we show that SAR247799 is the most G protein-biased S1P1 agonist currently characterized. This rank order of bias among the most clinically advanced S1P1 modulators provides a new perspective on the relative potential of these clinical molecules for improving endothelial function in patients in relation to their lymphocyte-reducing (desensitization) properties.


Subject(s)
Endothelial Cells/drug effects , Sphingosine-1-Phosphate Receptors/agonists , Acetates/pharmacology , Azetidines/pharmacology , Benzyl Compounds/pharmacology , Electric Impedance , Endothelial Cells/metabolism , Endothelial Cells/physiology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Indans/pharmacology , Lymphocytes/drug effects , Multiple Sclerosis/drug therapy , Oxadiazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction/physiology , Sphingosine-1-Phosphate Receptors/metabolism , Thiazoles/pharmacology
4.
ESC Heart Fail ; 7(5): 2871-2883, 2020 10.
Article in English | MEDLINE | ID: mdl-32691522

ABSTRACT

AIMS: Excessive activation of Ca/calmodulin-dependent kinase II (CaMKII) is of critical importance in heart failure (HF) and atrial fibrillation. Unfortunately, lack of selectivity, specificity, and bioavailability have slowed down development of inhibitors for clinical use. We investigated a novel CaMKIIδ/CaMKIIÉ£-selective, ATP-competitive, orally available CaMKII inhibitor (RA608) on right atrial biopsies of 119 patients undergoing heart surgery. Furthermore, we evaluated its oral efficacy to prevent deterioration of HF in mice after transverse aortic constriction (TAC). METHODS AND RESULTS: In human atrial cardiomyocytes and trabeculae, respectively, RA608 significantly reduced sarcoplasmic reticulum Ca leak, reduced diastolic tension, and increased sarcoplasmic reticulum Ca content. Patch-clamp recordings confirmed the safety of RA608 in human cardiomyocytes. C57BL6/J mice were subjected to TAC, and left ventricular function was monitored by echocardiography. Two weeks after TAC, RA608 was administered by oral gavage for 7 days. Oral RA608 treatment prevented deterioration of ejection fraction. At 3 weeks after TAC, ejection fraction was 46.1 ± 3.7% (RA608) vs. 34.9 ± 2.6% (vehicle), n = 9 vs. n = 12, P < 0.05, ANOVA, which correlated with significantly less CaMKII autophosphorylation at threonine 287. Moreover, a single oral dose significantly reduced inducibility of atrial and ventricular arrhythmias in CaMKIIδ transgenic mice 4 h after administration. Atrial fibrillation was induced in 6/6 mice for vehicle vs. 1/7 for RA608, P < 0.05, 'n - 1' χ2 test. Ventricular tachycardia was induced in 6/7 for vehicle vs. 2/7 for RA608, P < 0.05, 'n - 1' χ2 test. CONCLUSIONS: RA608 is the first orally administrable CaMKII inhibitor with potent efficacy in human myocytes. Moreover, oral administration potently inhibits arrhythmogenesis and attenuates HF development in mice in vivo.


Subject(s)
Calmodulin , Heart Failure , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Humans , Mice , Sarcoplasmic Reticulum/metabolism
5.
Biochem Biophys Rep ; 22: 100767, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32490213

ABSTRACT

Cardiomyopathy caused by A-type lamins gene (LMNA) mutations (LMNA cardiomyopathy) is associated with dysfunction of the heart, often leading to heart failure. LMNA cardiomyopathy is highly penetrant with bad prognosis with no specific therapy available. Searching for alternative ways to halt the progression of LMNA cardiomyopathy, we studied the role of calcium homeostasis in the evolution of this disease. We showed that sarcolipin, an inhibitor of the sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) was abnormally elevated in the ventricular cardiomyocytes of mutated mice compared with wild type mice, leading to an alteration of calcium handling. This occurs early in the progression of the disease, when the left ventricular function was not altered. We further demonstrated that down regulation of sarcolipin using adeno-associated virus (AAV) 9-mediated RNA interference delays cardiac dysfunction in mouse model of LMNA cardiomyopathy. These results showed a novel role for sarcolipin on calcium homeostasis in heart and open perspectives for future therapeutic interventions to LMNA cardiomyopathy.

6.
J Pharmacol Exp Ther ; 374(1): 24-37, 2020 07.
Article in English | MEDLINE | ID: mdl-32332113

ABSTRACT

Chronic kidney disease (CKD) remains a common disorder, leading to growing health and economic burden without curative treatment. In diabetic patients, CKD may result from a combination of metabolic and nonmetabolic-related factors, with mortality mainly driven by cardiovascular events. The marked overactivity of the urotensinergic system in diabetic patients implicates this vasoactive peptide as a possible contributor to the pathogenesis of renal as well as heart failure. Previous preclinical studies with urotensin II (UII) antagonists in chronic kidney disease were based on simple end points that did not reflect the complex etiology of the disease. Given this, our studies revisited the therapeutic value of UII antagonism in CKD and extensively characterized 1-({[6-{4-chloro-3-[3-(dimethylamino)propoxy]phenyl}-5-(2-methylphenyl)pyridin-2-yl]carbonyl}amino) cyclohexanecarboxylic acid hydrochloride (SAR101099), a potent, selective, and orally long-acting UII receptor competitive antagonist, inhibiting not only UII but also urotensin-related peptide activities. SR101099 treatment more than halved proteinurea and albumin/creatinine ratio in spontaneously hypertensive stroke-prone (SHR-SP) rats fed with salt/fat diet and Dahl-salt-sensitive rats, respectively, and it halved albuminuria in streptozotocin-induced diabetes rats. Importantly, these effects were accompanied by a decrease in mortality of 50% in SHR-SP and of 35% in the Dahl salt-sensitive rats. SAR101099 was also active on CKD-related cardiovascular pathologies and partly preserved contractile reserve in models of heart failure induced by myocardial infarction or ischemia/reperfusion in rats and pigs, respectively. SAR101099 exhibited a good safety/tolerability profile at all tested doses in clinical phase-I studies. Together, these data suggest that CKD patient selection considering comorbidities together with new stratification modalities should unveil the urotensin antagonists' therapeutic potential. SIGNIFICANCE STATEMENT: Chronic kidney disease (CKD) is a pathology with growing health and economic burden, without curative treatment. For years, the impact of urotensin II receptor (UT) antagonism to treat CKD may have been compromised by available tools or models to deeper characterize the urotensinergic system. New potent, selective, orally long-acting cross-species UT antagonist such as SAR101099 exerting reno- and cardioprotective effects could offer novel therapeutic opportunities. Its preclinical and clinical results suggest that UT antagonism remains an attractive target in CKD on top of current standard of care.


Subject(s)
Receptors, G-Protein-Coupled/antagonists & inhibitors , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/epidemiology , Animals , Comorbidity , HEK293 Cells , Hemodynamics/drug effects , Humans , Rats , Renal Insufficiency, Chronic/physiopathology
7.
Cardiovasc Res ; 116(2): 329-338, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31038167

ABSTRACT

AIMS: Despite improvements in patient identification and management, heart failure (HF) remains a major public health burden and an important clinical challenge. A variety of animal and human studies have provided evidence suggesting a central role of calcium/calmodulin-dependent protein kinase II (CaMKII) in the development of pathological cardiac remodelling and HF. Here, we describe a new potent, selective, and orally available CaMKII inhibitor. METHODS AND RESULTS: Chemical optimization led to the identification of RA306 as a selective CaMKII inhibitor. This compound was found potent on the cardiac CaMKII isoforms delta and gamma (IC50 in the 10 nM range), with pharmacokinetic properties allowing oral administration in animal models of HF. RA306 was administered to diseased mice carrying a mutation in alpha-actin that is responsible for dilated cardiomyopathy (DCM) in humans. In two separate studies, RA306 was orally administered at 30 mg/kg either for 2 weeks (twice a day) or for 2 months (once a day). Echocardiography monitoring showed that RA306 significantly improved cardiac function (ejection fraction and cardiac output) as compared to vehicle. These disease modifying effects of RA306 were associated with inhibition of cardiac phosphorylation of phospholamban (PLN) at threonine-17, indicating reduced cardiac CaMKII activity. CONCLUSION: This work supports the feasibility of identifying potent orally available CaMKII inhibitors suitable for clinical use to treat heart disease.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Cardiomyopathy, Dilated/drug therapy , Morpholines/administration & dosage , Myocytes, Cardiac/drug effects , Protein Kinase Inhibitors/administration & dosage , Stroke Volume/drug effects , Ventricular Function, Left/drug effects , Actins/genetics , Administration, Oral , Animals , Calcium-Binding Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiomyopathy, Dilated/enzymology , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Cells, Cultured , Disease Models, Animal , Genetic Predisposition to Disease , Humans , Mice, Transgenic , Morpholines/pharmacokinetics , Mutation , Myocytes, Cardiac/enzymology , Phosphorylation , Protein Kinase Inhibitors/pharmacokinetics , Rats , Recovery of Function
8.
Am J Physiol Renal Physiol ; 310(11): F1414-22, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27076647

ABSTRACT

Polycystic kidney diseases (PKDs) are genetic diseases characterized by renal cyst formation with increased cell proliferation, apoptosis, and transition to a secretory phenotype at the expense of terminal differentiation. Despite recent progress in understanding PKD pathogenesis and the emergence of potential therapies, the key molecular mechanisms promoting cystogenesis are not well understood. Here, we demonstrate that mechanisms including endoplasmic reticulum stress, oxidative damage, and compromised mitochondrial function all contribute to nephronophthisis-associated PKD. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is emerging as a critical mediator of these cellular processes. Therefore, we reasoned that pharmacological targeting of CaMKII may translate into effective inhibition of PKD in jck mice. Our data demonstrate that CaMKII is activated within cystic kidney epithelia in jck mice. Blockade of CaMKII with a selective inhibitor results in effective inhibition of PKD in jck mice. Mechanistic experiments in vitro and in vivo demonstrated that CaMKII inhibition relieves endoplasmic reticulum stress and oxidative damage and improves mitochondrial integrity and membrane potential. Taken together, our data support CaMKII inhibition as a new and effective therapeutic avenue for the treatment of cystic diseases.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Endoplasmic Reticulum Stress/physiology , Kidney/metabolism , Mitochondria/metabolism , Oxidative Stress/physiology , Polycystic Kidney Diseases/metabolism , Animals , Mice
9.
Cell Signal ; 17(4): 489-96, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15601626

ABSTRACT

Neuropeptide Y (NPY) has several receptors; one of them, the neuropeptide Y5 receptor (NPY5) seems involved in feeding behavior in mammals. Although this particular receptor has been extensively studied in the literature, the difficulties encountered to obtain a stable cell line expressing this recombinant receptor have impaired the development of tools necessary to establish its molecular pharmacology. We thus established a method for the functional study of new ligands. It is based upon the cotransfection in human melatonin receptor 1 (MT1)-overexpressing HEK293 cells of three plasmids encoding melanocortin receptor (MC5), neuropeptide Y5 receptor (NPY5) and a cyclic AMP response element-controlled luciferase. Once challenged with alphaMSH, the MC5 receptor activates the cyclic AMP response, through the coupling protein subunit G(s). In contrast, NPY5 agonists, through the NPY5 receptor which is negatively coupled to the same pathway, counteract the alphaMSH-mediated effect on cyclic AMP level. Using appropriate controls, this method can pinpoint compounds with antagonistic activity. Simple and straightforward, this system permits reproducible measurements of agonist or antagonist effects in the presence of neuropeptide Y, the natural agonist. This method has the advantage over already existing methods and beyond its apparent complexity, to enhance the cyclic AMP concentration at a 'physiological' level, by opposition to a forskolin-induced adenylate cyclase activation. Finally, to further validate this assay, we showed results from (1) a series of natural peptidic agonists that permitted the standardization and (2) a series of potent nonpeptidic antagonists (affinity >10(-9) M) that form a new class of active NPY5 receptor antagonists.


Subject(s)
Genes, Reporter , Luciferases/genetics , Receptors, Neuropeptide Y/antagonists & inhibitors , Biological Assay , Humans , Ligands , Neuropeptide Y/pharmacology , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Receptors, Neuropeptide Y/genetics , Receptors, Neuropeptide Y/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
Biochem J ; 369(Pt 3): 667-73, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12398768

ABSTRACT

The neuropeptide Y Y5 receptor gene generates two splice variants, referred to here as Y5(L) (long isoform) and Y5(S) (short isoform). Y5(L) mRNA differs from Y5(S) mRNA in its 5' end, generating a putative open reading frame with 30 additional nucleotides upstream of the initiator AUG compared with the Y5(S) mRNA. The purpose of the present work was to investigate the existence of the Y5(L) mRNA. The authenticity of this transcript was confirmed by isolating part of its 5' untranslated region through 5' rapid amplification of cDNA ends and analysing its tissue distribution. To study the initiation of translation on Y5(L) mRNA, we cloned the Y5(L) cDNA and two Y5(L) cDNA mutants lacking the first or the second putative initiation start codon. Transient expression of the three plasmids in COS-7 cells and saturation binding experiments using (125)I-labelled polypeptide YY (PYY) as a ligand showed that initiation of translation on Y5(L) mRNA could start at the first AUG, giving rise to a Y5(L) receptor with an N-terminal 10-amino-acid extension when compared with the Y5(S) receptor. The human Y5(L) and Y5(S) receptor isoforms displayed similar affinity constants (1.3 nM and 1.5 nM respectively). [(125)I]PYY binding to COS-7 cells expressing either the Y5(L) or the Y5(S) isoform was inhibited with the same rank order of potency by a selection of six chemically diverse compounds: PYY>neuropeptide Y>pancreatic polypeptide>CGP71683A>Synaptic 34>Banyu 6. Comparison of the tissue distribution of Y5(L) and Y5(S) mRNAs, as determined by reverse transcription-PCR analysis, indicated that expression of Y5(L) mRNA occurs in a tissue-specific manner. Finally, we have shown that the two AUG triplets contained in the 5' untranslated region of Y5(L) mRNA did not affect receptor expression.


Subject(s)
5' Untranslated Regions , Arginine/analogs & derivatives , Receptors, Neuropeptide Y/drug effects , Receptors, Neuropeptide Y/genetics , Alternative Splicing , Animals , Arginine/pharmacology , Base Sequence , Brain/metabolism , COS Cells/drug effects , Cloning, Molecular , Codon, Initiator , Humans , Molecular Sequence Data , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Protein Biosynthesis , Protein Isoforms/drug effects , Protein Isoforms/genetics , RNA, Messenger/metabolism , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/metabolism , Transcription, Genetic , Trinucleotide Repeats/genetics
11.
Biochem Biophys Res Commun ; 295(4): 841-8, 2002 Jul 26.
Article in English | MEDLINE | ID: mdl-12127971

ABSTRACT

Melanin-concentrating hormone (MCH) is a cyclic peptide, mainly involved in the regulation of skin pigmentation in teleosts and feeding behavior in mammals. The human keratinocyte SVK14 cell line has been previously shown to express binding sites for the MCH analog [125I]-[Phe13,3-iodo-Tyr19]MCH. We report here that: (1) this binding site similarly recognized [125I]-[3-iodo-Tyr13]MCH; (2) its pharmacological profile clearly differed from those observed at the two human MCH receptor subtypes, MCH1-R and MCH2-R; (3) MCH did not induce any effect on second messenger systems (including cAMP, calcium, and MAP kinase signaling pathways), and (4) no mRNAs corresponding to the MCH receptors were found. In conclusion, the binding site characterized in the SVK14 cell line is distinct from the MCH1 and MCH2 receptors and deserves therefore further investigation.


Subject(s)
Hypothalamic Hormones/chemistry , Hypothalamic Hormones/metabolism , Melanins/chemistry , Melanins/metabolism , Pituitary Hormones/chemistry , Pituitary Hormones/metabolism , Receptors, Pituitary Hormone/metabolism , Binding Sites , Cell Line , Cell Membrane/metabolism , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Keratinocytes/metabolism , Ligands , MAP Kinase Signaling System , Peptides/chemistry , Protein Binding , RNA, Messenger/metabolism , Receptors, G-Protein-Coupled , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Structure-Activity Relationship
12.
Cell Signal ; 14(10): 829-37, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12135704

ABSTRACT

Affinities and efficacies of chemically diverse ligands--some of them used as clinical agents--were examined, employing [3H]RX821,002 and [35S]GTPgammaS binding assays, respectively, at human (h) cloned, halpha(2A), halpha(2B) and halpha(2C) adrenoceptors (AR) expressed in Chinese hamster ovary (CHO) cells. As compared to noradrenaline (NA, efficacy defined as 100%), the majority of the 13 agonists tested generally behaved as partial agonists. Amongst 18 antagonists, pK(B) and pK(i) values, which were highly correlated for each alpha(2)-AR subtype, failed to reveal any strikingly selective agents. Inverse agonist properties were not detected for any antagonist, consistent with a lack of constitutive activity suggested by the monophasic inhibition of [35S]GTPgammaS binding by GTPgammaS. These data should facilitate interpretation of experimental and clinical actions of adrenergic agonists. Moreover, they emphasize the continuing need for alpha(2)-AR subtype-selective antagonists in order to define further the roles and therapeutic relevance of halpha(2A)-, halpha(2B)-, and halpha(2C)-AR.


Subject(s)
Adrenergic alpha-Agonists/pharmacology , Adrenergic alpha-Antagonists/pharmacology , CHO Cells/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Animals , Binding Sites/drug effects , Binding Sites/physiology , Binding, Competitive/drug effects , Binding, Competitive/physiology , CHO Cells/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cricetinae , Dose-Response Relationship, Drug , Drug Interactions , Guanosine 5'-O-(3-Thiotriphosphate) , Humans , Norepinephrine/metabolism , Norepinephrine/pharmacology , Receptors, Adrenergic, alpha-2/drug effects , Receptors, Adrenergic, alpha-2/genetics , Sodium Chloride/pharmacology , Sulfur Radioisotopes , Transfection
13.
Can J Physiol Pharmacol ; 80(5): 388-95, 2002 May.
Article in English | MEDLINE | ID: mdl-12056544

ABSTRACT

Melanin-concentrating hormone (MCH) is a cyclic neuropeptide of nineteen amino acids in mammals. Its involvement in the feeding behaviour has been well established during the last few years. A first receptor subtype, now termed MCHIR, was discovered in 1999, following the desorphanisation of the SLCI orphan receptor, using either reverse pharmacology or systematic screening of agonist candidates. A second MCH receptor, MCH2R, has been discovered recently, by several groups working on data mining of genomic banks. The molecular pharmacology of these two receptors is only described on the basis of the action of peptides derived from MCH. The present review tentatively summarizes the knowledge on these two receptors and presents the first attempts to discover new classes of antagonists that might have major roles in the control of obesity and feeding behaviour.


Subject(s)
Hypothalamic Hormones/metabolism , Melanins/metabolism , Pituitary Hormones/metabolism , Receptors, Pituitary Hormone/metabolism , Amino Acid Sequence/physiology , Animals , Feeding Behavior/physiology , Humans , Hypothalamic Hormones/chemistry , Hypothalamic Hormones/genetics , Melanins/chemistry , Melanins/genetics , Molecular Sequence Data , Pituitary Hormones/chemistry , Pituitary Hormones/genetics , Receptors, Pituitary Hormone/chemistry , Receptors, Pituitary Hormone/genetics , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...