Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 23(13): 3730-3740, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29949758

ABSTRACT

LINE-1 (L1) retrotransposons are a source of insertional mutagenesis in tumor cells. However, the clinical significance of L1 mobilization during tumorigenesis remains unclear. Here, we applied retrotransposon capture sequencing (RC-seq) to multiple single-cell clones isolated from five ovarian cancer cell lines and HeLa cells and detected endogenous L1 retrotransposition in vitro. We then applied RC-seq to ovarian tumor and matched blood samples from 19 patients and identified 88 tumor-specific L1 insertions. In one tumor, an intronic de novo L1 insertion supplied a novel cis-enhancer to the putative chemoresistance gene STC1. Notably, the tumor subclone carrying the STC1 L1 mutation increased in prevalence after chemotherapy, further increasing STC1 expression. We also identified hypomethylated donor L1s responsible for new L1 insertions in tumors and cultivated cancer cells. These congruent in vitro and in vivo results highlight L1 insertional mutagenesis as a common component of ovarian tumorigenesis and cancer genome heterogeneity.


Subject(s)
Evolution, Molecular , Long Interspersed Nucleotide Elements/genetics , Ovarian Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , DNA Methylation , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Loss of Heterozygosity/genetics , Mutagenesis, Insertional , Mutation , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics
2.
J Pathol ; 239(2): 218-30, 2016 06.
Article in English | MEDLINE | ID: mdl-27174786

ABSTRACT

Skeletal metastases present a major clinical challenge for prostate cancer patient care, inflicting distinctive mixed osteoblastic and osteolytic lesions that cause morbidity and refractory skeletal complications. Macrophages are abundant in bone and bone marrow and can influence both osteoblast and osteoclast function in physiology and pathology. Herein, we examined the role of macrophages in prostate cancer bone lesions, particularly the osteoblastic response. First, macrophage and lymphocyte distributions were qualitatively assessed in patient's prostate cancer skeletal lesions by immunohistochemistry. Second, macrophage functional contributions to prostate tumour growth in bone were explored using an immune-competent mouse model combined with two independent approaches to achieve in vivo macrophage depletion: liposome encapsulated clodronate that depletes phagocytic cells (including macrophages and osteoclasts); and targeted depletion of CD169(+) macrophages using a suicide gene knock-in model. Immunohistochemistry and histomorphometric analysis were performed to quantitatively assess cancer-induced bone changes. In human bone metastasis specimens, CD68(+) macrophages were consistently located within the tumour mass. Osteal macrophages (osteomacs) were associated with pathological woven bone within the metastatic lesions. In contrast, lymphocytes were inconsistently present in prostate cancer skeletal lesions and when detected, had varied distributions. In the immune-competent mouse model, CD169(+) macrophage ablation significantly inhibited prostate cancer-induced woven bone formation, suggesting that CD169(+) macrophages within pathological woven bone are integral to tumour-induced bone formation. In contrast, pan-phagocytic cell, but not targeted CD169(+) macrophage depletion resulted in increased tumour mass, indicating that CD169(-) macrophage subset(s) and/or osteoclasts influenced tumour growth. In summary, these observations indicate a prominent role for macrophages in prostate cancer bone metastasis that may be therapeutically targetable to reduce the negative skeletal impacts of this malignancy, including tumour-induced bone modelling. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Bone Neoplasms/secondary , Macrophages/immunology , Prostatic Neoplasms/immunology , Sialic Acid Binding Ig-like Lectin 1/immunology , Aged , Aged, 80 and over , Animals , Bone Neoplasms/immunology , Bone Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Humans , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Neoplasm Metastasis , Osteoblasts/immunology , Osteoblasts/pathology , Osteoclasts/immunology , Osteoclasts/pathology , Prostate/immunology , Prostate/pathology , Prostatic Neoplasms/pathology , Sialic Acid Binding Ig-like Lectin 1/metabolism
3.
J Basic Clin Physiol Pharmacol ; 27(5): 515-21, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27180341

ABSTRACT

BACKGROUND: This study examined the efficacy of the combination antioxidant, Formula 42 (F42), on cellular stress indicators in animal and human models of stress-induced oxidative stress. METHODS: A sub-chronic psychological stress model in rodents was used to induce stress and oxidative stress indicators over a 10-day period during which animals received oral doses of F42 or water. Following treatment, body weight, plasma stress hormone corticosterone, and oxidative capacity were evaluated. In healthy human subjects, a randomized double-blind crossover study was used to examine the antioxidant effect of F42 or placebo in an exercise-induced oxidative stress model. Erythrocyte and plasma oxidative status was evaluated using the fluorescent activation of 2',7'-dichlorofluorescin (DCF) as an indicator. RESULTS: Oral administration of F42 reduced the corticosterone response to acute stress compared to vehicle but did not differ at the conclusion of the 10-day study. However, F42 administration did reduce stress-induced growth restriction and alleviate DCF activation in circulating erythrocytes by approximately 10% following 10 days of stress exposure. Oral administration of F42 also significantly reduced DCF activation by approximately 10% in healthy human subjects undergoing exercise-induced oxidative stress. CONCLUSIONS: Oral administration of F42 in rodents produces transient reductions in stress hormones and reduces stress indicators following sub-chronic psychological stress exposure. In humans, F42 acts as an early and potent antioxidant capable of scavenging free radicals within 30 min of ingestion.


Subject(s)
Antioxidants/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Viridiplantae/chemistry , Administration, Oral , Adolescent , Adult , Animals , Corticosterone/metabolism , Cross-Over Studies , Double-Blind Method , Erythrocytes/drug effects , Exercise/physiology , Female , Fluoresceins/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Young Adult
4.
Br J Cancer ; 114(4): 417-26, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26882065

ABSTRACT

BACKGROUND: Development of targeted therapies for high-grade serous ovarian cancer (HGSC) remains challenging, as contributing molecular pathways are poorly defined or expressed heterogeneously. CUB-domain containing protein 1 (CDCP1) is a cell-surface protein elevated in lung, colorectal, pancreas, renal and clear cell ovarian cancer. METHODS: CUB-domain containing protein 1 was examined by immunohistochemistry in HGSC and fallopian tube. The impact of targeting CDCP1 on cell growth and migration in vitro, and intraperitoneal xenograft growth in mice was examined. Three patient-derived xenograft (PDX) mouse models were developed and characterised for CDCP1 expression. The effect of a monoclonal anti-CDCP1 antibody on PDX growth was examined. Src activation was assessed by western blot analysis. RESULTS: Elevated CDCP1 was observed in 77% of HGSC cases. Silencing of CDCP1 reduced migration and non-adherent cell growth in vitro and tumour burden in vivo. Expression of CDCP1 in patient samples was maintained in PDX models. Antibody blockade of CDCP1 significantly reduced growth of an HGSC PDX. The CDCP1-mediated activation of Src was observed in cultured cells and mouse xenografts. CONCLUSIONS: CUB-domain containing protein 1 is over-expressed by the majority of HGSCs. In vitro and mouse model data indicate that CDCP1 has a role in HGSC and that it can be targeted to inhibit progression of this cancer.


Subject(s)
Antigens, CD/metabolism , Cell Adhesion Molecules/metabolism , Cystadenocarcinoma, Serous/pathology , Neoplasm Proteins/metabolism , Ovarian Neoplasms/pathology , Animals , Antigens, CD/genetics , Antigens, Neoplasm , Biomarkers, Tumor/metabolism , Cell Adhesion Molecules/genetics , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Cystadenocarcinoma, Serous/metabolism , Disease Models, Animal , Female , Heterografts , Humans , Mice , Neoplasm Grading , Neoplasm Proteins/genetics , Ovarian Neoplasms/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...