Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 188(7): 3371-81, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22371396

ABSTRACT

Asthma is a chronic inflammatory disease in which airway epithelial cells are the first line of defense against exposure of the airway to infectious agents. Src homology protein (SHP)-1, a protein tyrosine phosphatase, is a negative regulator of signaling pathways that are critical to the development of asthma and host defense. We hypothesize that SHP-1 function is defective in asthma, contributing to the increased inflammatory response induced by Mycoplasma pneumoniae, a pathogen known to exacerbate asthma. M. pneumoniae significantly activated SHP-1 in airway epithelial cells collected from nonasthmatic subjects by bronchoscopy with airway brushing but not in cells from asthmatic subjects. In asthmatic airway epithelial cells, M. pneumoniae induced significant PI3K/Akt phosphorylation, NF-κB activation, and IL-8 production compared with nonasthmatic cells, which were reversed by SHP-1 overexpression. Conversely, SHP-1 knockdown significantly increased IL-8 production and PI3K/Akt and NF-κB activation in the setting of M. pneumoniae infection in nonasthmatic cells, but it did not exacerbate these three parameters already activated in asthmatic cells. Thus, SHP-1 plays a critical role in abrogating M. pneumoniae-induced IL-8 production in nonasthmatic airway epithelial cells through inhibition of PI3K/Akt and NF-κB activity, but it is defective in asthma, resulting in an enhanced inflammatory response to infection.


Subject(s)
Asthma/enzymology , Epithelial Cells/immunology , Mycoplasma pneumoniae/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 6/physiology , Adult , Asthma/immunology , Asthma/physiopathology , Bronchoalveolar Lavage Fluid/cytology , Cell Nucleus/enzymology , Cells, Cultured/enzymology , Cells, Cultured/immunology , Epithelial Cells/enzymology , Female , Humans , In Vitro Techniques , Inflammation , Interleukin-8/biosynthesis , Interleukin-8/genetics , Male , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Processing, Post-Translational , Protein Tyrosine Phosphatase, Non-Receptor Type 6/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , RNA, Small Interfering/pharmacology , Transcription, Genetic , Young Adult
2.
Radiology ; 262(1): 279-89, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22056683

ABSTRACT

PURPOSE: To evaluate the safety and tolerability of inhaling multiple 1-L volumes of undiluted hyperpolarized xenon 129 ((129)Xe) followed by up to a 16-second breath hold and magnetic resonance (MR) imaging. MATERIALS AND METHODS: This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained. Forty-four subjects (19 men, 25 women; mean age, 46.1 years ± 18.8 [standard deviation]) were enrolled, consisting of 24 healthy volunteers, 10 patients with chronic obstructive pulmonary disease (COPD), and 10 age-matched control subjects. All subjects received three or four 1-L volumes of undiluted hyperpolarized (129)Xe, followed by breath-hold MR imaging. Oxygen saturation, heart rate and rhythm, and blood pressure were continuously monitored. These parameters, along with respiratory rate and subjective symptoms, were assessed after each dose. Subjects' serum biochemistry and hematology were recorded at screening and at 24-hour follow-up. A 12-lead electrocardiogram (ECG) was obtained at these times and also within 2 hours prior to and 1 hour after (129)Xe MR imaging. Xenon-related symptoms were evaluated for relationship to subject group by using a χ(2) test and to subject age by using logistic regression. Changes in vital signs were tested for significance across subject group and time by using a repeated-measures multivariate analysis of variance test. RESULTS: The 44 subjects tolerated all xenon inhalations, no subjects withdrew, and no serious adverse events occurred. No significant changes in vital signs (P > .27) were observed, and no subjects exhibited changes in laboratory test or ECG results at follow-up that were deemed clinically important or required intervention. Most subjects (91%) did experience transient xenon-related symptoms, most commonly dizziness (59%), paresthesia (34%), euphoria (30%), and hypoesthesia (30%). All symptoms resolved without clinical intervention in 1.6 minutes ± 0.9. CONCLUSION: Inhalation of hyperpolarized (129)Xe is well tolerated in healthy subjects and in those with mild or moderate COPD. Subjects do experience mild, transient, xenon-related symptoms, consistent with its known anesthetic properties.


Subject(s)
Magnetic Resonance Imaging/methods , Pulmonary Disease, Chronic Obstructive/diagnosis , Adult , Analysis of Variance , Case-Control Studies , Chi-Square Distribution , Electrocardiography , Female , Humans , Logistic Models , Male , Middle Aged , Prospective Studies , Xenon Isotopes
3.
Am J Respir Crit Care Med ; 183(12): 1625-32, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21471104

ABSTRACT

RATIONALE: Invasive cell phenotypes have been demonstrated in malignant transformation, but not in other diseases, such as asthma. Cellular invasiveness is thought to be mediated by transforming growth factor (TGF)-ß1 and matrix metalloproteinases (MMPs). IL-13 is a key T(H)2 cytokine that directs many features of airway remodeling through TGF-ß1 and MMPs. OBJECTIVES: We hypothesized that, in human asthma, IL-13 stimulates increased airway fibroblast invasiveness via TGF-ß1 and MMPs in asthma compared with normal controls. METHODS: Fibroblasts were cultured from endobronchial biopsies in 20 subjects with mild asthma (FEV(1): 90 ± 3.6% pred) and 17 normal control subjects (FEV(1): 102 ± 2.9% pred) who underwent bronchoscopy. Airway fibroblast invasiveness was investigated using Matrigel chambers. IL-13 or IL-13 with TGF-ß1 neutralizing antibody or pan-MMP inhibitor (GM6001) was added to the lower chamber as a chemoattractant. Flow cytometry and immunohistochemistry were performed in a subset of subjects to evaluate IL-13 receptor levels. MEASUREMENTS AND MAIN RESULTS: IL-13 significantly stimulated invasion in asthmatic airway fibroblasts, compared with normal control subjects. Inhibitors of both TGF-ß1 and MMPs blocked IL-13-induced invasion in asthma, but had no effect in normal control subjects. At baseline, in airway tissue, IL-13 receptors were expressed in significantly higher levels in asthma, compared with normal control subjects. In airway fibroblasts, baseline IL-13Rα2 was reduced in asthma compared with normal control subjects. CONCLUSIONS: IL-13 potentiates airway fibroblast invasion through a mechanism involving TGF-ß1 and MMPs. IL-13 receptor subunits are differentially expressed in asthma. These effects may result in IL-13-directed airway remodeling in asthma.


Subject(s)
Asthma/pathology , Fibroblasts/physiology , Interleukin-13/physiology , Adult , Airway Remodeling/physiology , Bronchi/pathology , Cells, Cultured , Female , Flow Cytometry , Humans , Immunohistochemistry , Male , Matrix Metalloproteinases/physiology , Receptors, Interleukin-13/analysis , Transforming Growth Factor beta1/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...