Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 30(5): 594-604, 2014 May.
Article in English | MEDLINE | ID: mdl-24679406

ABSTRACT

OBJECTIVES: To test the null hypotheses that photoactive resin composites containing a Type I photoinitiator would exhibit reduced DC or increased monomer elution at substantially short curing times compared with materials based on a Type 2 ketone/amine system. METHODS: Two experimental resin composites were prepared, using either Lucirin-TPO or camphorquinone/DMAEMA. Specimens were light-cured using appropriate spectral emission that coincided with the absorption properties of each initiator using different irradiation protocols (0.5, 1, 3, 9s at 500, 1000 and 2000mW/cm(2) for Lucirin-TPO based composites and 20 or 40s at 1000mW/cm(2) for Lucirin-TPO and camphorquinone-based composites). Degree of conversion (DC) was measured by Raman spectroscopy, propagating radical concentrations were collected by means of electron paramagnetic resonance (EPR) and monomer leaching was characterized using high-performance liquid chromatography (HPLC). RESULTS: The null hypotheses were rejected, except for a single irradiation protocol (0.5s @ 500mW/cm(2)). Lucirin-TPO-based composites could cure 20 times faster and release at least 4 times less monomers in comparison to camphorquinone-based composites. At 1000mW/cm(2), and 1s irradiation time for curing times of 1s, Lucirin-TPO based composites displayed 10% higher DC. The difference in polymerization efficiency of Lucirin-TPO compared with camphorquinone-based resin composites were explained using EPR; the former showing a significantly greater yield of radicals which varied logarithmically with radiant exposure. SIGNIFICANCE: Lucirin-TPO is substantially more efficient at absorbing and converting photon energy when using a curing-light with an appropriate spectral emission and otherwise a limitation noted in several previous publications. At concentrations of 0.0134mol/L, Lucirin-TPO-based composites require a minimum light intensity of 1000mW/cm(2) and an exposure time of 1s to provide significantly improved DC and minimal elution compared with a conventional photoinitiator system. The use of a wide range of curing protocols in the current experiment has realized the significant potential of Lucirin-TPO and its impact for clinical applications, in replacement to materials using camphorquinone.


Subject(s)
Composite Resins/chemistry , Curing Lights, Dental
2.
J Magn Reson ; 220: 45-53, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22683580

ABSTRACT

Photopolymerizable dimethacrylate-based dental resins, which are widely used in the current routine dental practice, show a very strong EPR signal. This signal has already been studied by EPR spectroscopy, but not by EPR imaging. The spectrum is quite complex due to hyperfine splitting and to the presence of two radical species, which is a priori not favorable to EPR imaging. In this work, the robustness of EPR imaging was investigated, both in the spatial and spectral-spatial modes, to characterize this type of material using small resin samples. The images produced using standard deconvolution and filtered backprojection procedure did not display any noticeable artifact. They also reflected the expected density of free radicals in two types of resin, photopolymerized with two different light irradiances. Moreover, the spectral-spatial imaging mode provided a complete spectrum for each pixel, which enabled to delineate the different distributions of the two radical species inside the samples. EPR imaging offered a different information compared to the usual degree of conversion measured by Raman spectrometry. These results suggest that EPR imaging could be used as a complementary tool to further characterize the dimethacrylate-based resins used in dental practice or for other applications.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Light-Curing of Dental Adhesives , Methacrylates/analysis , Methacrylates/chemistry , Light , Materials Testing/methods , Methacrylates/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...