Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 165(2): 436-54, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21718305

ABSTRACT

BACKGROUND AND PURPOSE: DF 2156A is a new dual inhibitor of IL-8 receptors CXCR1 and CXCR2 with an optimal pharmacokinetic profile. We characterized its binding mode, molecular mechanism of action and selectivity, and evaluated its therapeutic potential. EXPERIMENTAL APPROACH: The binding mode, molecular mechanism of action and selectivity were investigated using chemotaxis of L1.2 transfectants and human leucocytes, in addition to radioligand and [(35) S]-GTPγS binding approaches. The therapeutic potential of DF 2156A was evaluated in acute (liver ischaemia and reperfusion) and chronic (sponge-induced angiogenesis) experimental models of inflammation. KEY RESULTS: A network of polar interactions stabilized by a direct ionic bond between DF 2156A and Lys(99) on CXCR1 and the non-conserved residue Asp(293) on CXCR2 are the key determinants of DF 2156A binding. DF 2156A acted as a non-competitive allosteric inhibitor blocking the signal transduction leading to chemotaxis without altering the binding affinity of natural ligands. DF 2156A effectively and selectively inhibited CXCR1/CXCR2-mediated chemotaxis of L1.2 transfectants and leucocytes. In a murine model of sponge-induced angiogenesis, DF 2156A reduced leucocyte influx, TNF-α production and neovessel formation. In vitro, DF 2156A prevented proliferation, migration and capillary-like organization of HUVECs in response to human IL-8. In a rat model of liver ischaemia and reperfusion (I/R) injury, DF 2156A decreased PMN and monocyte-macrophage infiltration and associated hepatocellular injury. CONCLUSION AND IMPLICATIONS: DF 2156A is a non-competitive allosteric inhibitor of both IL-8 receptors CXCR1 and CXCR2. It prevented experimental angiogenesis and hepatic I/R injury in vivo and, therefore, has therapeutic potential for acute and chronic inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/therapeutic use , Cell Membrane/metabolism , Cell Proliferation/drug effects , Chemotaxis, Leukocyte/drug effects , Disease Models, Animal , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Interleukin-8/metabolism , Leukocytes/drug effects , Leukocytes/immunology , Leukocytes/metabolism , Liver/drug effects , Liver/immunology , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Mutagenesis, Site-Directed , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Rats , Rats, Sprague-Dawley , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/immunology , Reperfusion Injury/pathology , Skin/blood supply , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use
2.
Curr Med Chem ; 12(2): 217-36, 2005.
Article in English | MEDLINE | ID: mdl-15638737

ABSTRACT

Activation of complement via the innate and adaptive immune system is vital to the body's defences in fighting infections. Unregulated complement activation is likely to play a crucial role in the pathogenesis of several diseases including psoriasis, adult (acute) respiratory distress syndrome (ARDS), bullous pemphigoid (BP), rheumatoid arthritis (RA) and ischemia-reperfusion (I/R) injury. The 74 amino acid peptide C5a is released after complement activation at sites of inflammation and is a potent chemoattractant for neutrophils, basophils, eosinophils, leukocytes, monocytes and macrophages. Recombinant proteins and humanized anti-C5 antibodies have been recently developed for blocking specific proteins of the complement system bringing renewed attention towards complement inhibition. Pharmacological studies have been highlighting the complement fragment C5a as an interesting target for the management of complement mediated diseases. Specific inhibition of C5a biological activity could gain therapeutic benefit without affecting the protective immune response. In the last few years several peptide and non-peptide antagonists of C5a have been discovered and tested in relevant pharmacological models; the availability of orally active compounds is rapidly helping to delineate the precise role of C5a in immunoinflammatory disorders. Moreover, mutagenesis data for the C5a/C5a receptor (C5aR) couple make C5aR a valuable model for mechanistic studies of peptidergic G-protein coupled receptors (GPCRs). The aim of this review is to outline the recent advances in C5a inhibition, especially highlighting the value of a multidisciplinary integrated approach in drug discovery.


Subject(s)
Complement C5a/antagonists & inhibitors , Complement Inactivator Proteins/pharmacology , Receptor, Anaphylatoxin C5a/metabolism , Autoimmune Diseases/metabolism , Binding Sites , Drug Design , Humans , Inflammation/metabolism , Leukocytes/metabolism , Lung Diseases/metabolism , Monocytes/metabolism , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...