Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol ; 147(1): 9, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38175301

ABSTRACT

Nuclear clearance and cytoplasmic accumulations of the RNA-binding protein TDP-43 are pathological hallmarks in almost all patients with amyotrophic lateral sclerosis (ALS) and up to 50% of patients with frontotemporal dementia (FTD) and Alzheimer's disease. In Alzheimer's disease, TDP-43 pathology is predominantly observed in the limbic system and correlates with cognitive decline and reduced hippocampal volume. Disruption of nuclear TDP-43 function leads to abnormal RNA splicing and incorporation of erroneous cryptic exons in numerous transcripts including Stathmin-2 (STMN2, also known as SCG10) and UNC13A, recently reported in tissues from patients with ALS and FTD. Here, we identify both STMN2 and UNC13A cryptic exons in Alzheimer's disease patients, that correlate with TDP-43 pathology burden, but not with amyloid-ß or tau deposits. We also demonstrate that processing of the STMN2 pre-mRNA is more sensitive to TDP-43 loss of function than UNC13A. In addition, full-length RNAs encoding STMN2 and UNC13A are suppressed in large RNA-seq datasets generated from Alzheimer's disease post-mortem brain tissue. Collectively, these results open exciting new avenues to use STMN2 and UNC13A as potential therapeutic targets in a broad range of neurodegenerative conditions with TDP-43 proteinopathy including Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Pick Disease of the Brain , Humans , Alzheimer Disease/genetics , DNA-Binding Proteins/genetics , RNA Splicing , RNA, Messenger/genetics , Stathmin/genetics
2.
Nat Neurosci ; 27(1): 34-47, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37996528

ABSTRACT

The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons. Persistent stathmin-2 loss in adult mice results in pathologies found in ALS, including reduced interneurofilament spacing, axonal caliber collapse that drives tearing within outer myelin layers, diminished conduction velocity, progressive motor and sensory deficits, and muscle denervation. These findings reinforce restoration of stathmin-2 as an attractive therapeutic approach for ALS and other TDP-43-dependent neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Mice , Amyotrophic Lateral Sclerosis/metabolism , Axons/physiology , Denervation , DNA-Binding Proteins/genetics , Intermediate Filaments/metabolism , Intermediate Filaments/pathology , Motor Neurons/metabolism , Stathmin/genetics , Stathmin/metabolism
3.
Science ; 379(6637): 1140-1149, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36927019

ABSTRACT

Loss of nuclear TDP-43 is a hallmark of neurodegeneration in TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 mislocalization results in cryptic splicing and polyadenylation of pre-messenger RNAs (pre-mRNAs) encoding stathmin-2 (also known as SCG10), a protein that is required for axonal regeneration. We found that TDP-43 binding to a GU-rich region sterically blocked recognition of the cryptic 3' splice site in STMN2 pre-mRNA. Targeting dCasRx or antisense oligonucleotides (ASOs) suppressed cryptic splicing, which restored axonal regeneration and stathmin-2-dependent lysosome trafficking in TDP-43-deficient human motor neurons. In mice that were gene-edited to contain human STMN2 cryptic splice-polyadenylation sequences, ASO injection into cerebral spinal fluid successfully corrected Stmn2 pre-mRNA misprocessing and restored stathmin-2 expression levels independently of TDP-43 binding.


Subject(s)
DNA-Binding Proteins , Gene Editing , Polyadenylation , RNA Splicing , Stathmin , TDP-43 Proteinopathies , Animals , Humans , Mice , DNA-Binding Proteins/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Stathmin/genetics , Stathmin/metabolism , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/therapy , RNA Splice Sites , Oligonucleotides, Antisense/genetics , Neuronal Outgrowth
4.
Science ; 371(6529)2021 02 05.
Article in English | MEDLINE | ID: mdl-33335017

ABSTRACT

The RNA binding protein TDP-43 forms intranuclear or cytoplasmic aggregates in age-related neurodegenerative diseases. In this study, we found that RNA binding-deficient TDP-43 (produced by neurodegeneration-causing mutations or posttranslational acetylation in its RNA recognition motifs) drove TDP-43 demixing into intranuclear liquid spherical shells with liquid cores. These droplets, which we named "anisosomes", have shells that exhibit birefringence, thus indicating liquid crystal formation. Guided by mathematical modeling, we identified the primary components of the liquid core to be HSP70 family chaperones, whose adenosine triphosphate (ATP)-dependent activity maintained the liquidity of shells and cores. In vivo proteasome inhibition within neurons, to mimic aging-related reduction of proteasome activity, induced TDP-43-containing anisosomes. These structures converted to aggregates when ATP levels were reduced. Thus, acetylation, HSP70, and proteasome activities regulate TDP-43 phase separation and conversion into a gel or solid phase.


Subject(s)
DNA-Binding Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Protein Aggregates , RNA-Binding Proteins/metabolism , Aging/metabolism , Animals , Anisotropy , Cryoelectron Microscopy , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , HEK293 Cells , Histone Deacetylases/metabolism , Humans , Liquid Crystals/chemistry , Mice , Mice, Inbred C57BL , Mutation , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Protein Domains , RNA-Binding Proteins/genetics , Rats , Rats, Sprague-Dawley
5.
Nat Neurosci ; 22(2): 180-190, 2019 02.
Article in English | MEDLINE | ID: mdl-30643298

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with loss of nuclear transactive response DNA-binding protein 43 (TDP-43). Here we identify that TDP-43 regulates expression of the neuronal growth-associated factor stathmin-2. Lowered TDP-43 levels, which reduce its binding to sites within the first intron of stathmin-2 pre-messenger RNA, uncover a cryptic polyadenylation site whose utilization produces a truncated, non-functional mRNA. Reduced stathmin-2 expression is found in neurons trans-differentiated from patient fibroblasts expressing an ALS-causing TDP-43 mutation, in motor cortex and spinal motor neurons from patients with sporadic ALS and familial ALS with GGGGCC repeat expansion in the C9orf72 gene, and in induced pluripotent stem cell (iPSC)-derived motor neurons depleted of TDP-43. Remarkably, while reduction in TDP-43 is shown to inhibit axonal regeneration of iPSC-derived motor neurons, rescue of stathmin-2 expression restores axonal regenerative capacity. Thus, premature polyadenylation-mediated reduction in stathmin-2 is a hallmark of ALS-FTD that functionally links reduced nuclear TDP-43 function to enhanced neuronal vulnerability.


Subject(s)
DNA-Binding Proteins/metabolism , Membrane Proteins/metabolism , Motor Neurons/metabolism , Nerve Degeneration/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Female , Humans , Motor Cortex/metabolism , Motor Cortex/pathology , Motor Neurons/pathology , Nerve Degeneration/pathology , Polyadenylation , Spinal Cord/metabolism , Spinal Cord/pathology , Stathmin
6.
Stem Cells Dev ; 26(3): 206-214, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27762666

ABSTRACT

Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by null mutations in the dystrophin gene. Although the primary defect is the deficiency of muscle dystrophin, secondary events, including chronic inflammation, fibrosis, and muscle regeneration failure are thought to actively contribute to disease progression. Despite several advances, there is still no effective therapy for DMD. Therefore, the potential regenerative capacities, and immune-privileged properties of mesenchymal stromal cells (MSCs), have been the focus of intense investigation in different animal models aiming the treatment of these disorders. However, these studies have shown different outcomes according to the sources from which MSCs were obtained, which raise the question whether stem cells from distinct sources have comparable clinical effects. Here, we analyzed the protein content of the secretome of MSCs, isolated from three different sources (adipose tissue, skeletal muscle, and uterine tubes), obtained from five donors and evaluated their in vitro properties when cocultured with DMD myoblasts. All MSC lineages showed pathways enrichment related to protein metabolic process, oxidation-reduction process, cell proliferation, and regulation of apoptosis. We found that MSCs secretome proteins and their effect in vitro vary significantly according to the tissue and donors, including opposite effects in apoptosis assay, indicating the importance of characterizing MSC secretome profile before its use in animal and clinical trials. Despite the individual differences a pool of conditioned media from all MSCs lineages was able to delay apoptosis and enhance migration when in contact with DMD myoblasts.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Proteome/metabolism , Tissue Donors , Apoptosis/drug effects , Cell Line , Cell Movement/drug effects , Coculture Techniques , Culture Media, Conditioned/pharmacology , Cytoprotection/drug effects , Female , Humans , Mesenchymal Stem Cells/drug effects , Muscular Dystrophy, Duchenne/pathology , Myoblasts/drug effects , Myoblasts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...