Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 52(28): 9590-9606, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37377063

ABSTRACT

We describe the synthesis, physicochemical characterization, and in vitro antitumor assays of four novel analogous ruthenium(II) complexes with general formula cis-[RuII(N-L)(P-P)2]PF6, where P-P = bis(diphenylphosphine)methane (dppm, in complexes 1 and 2) or bis(diphenylphosphine)ethane (dppe, in complexes 3 and 4) and N-L = 5,6-diphenyl-4,5-dihydro-2H-[1,2,4]triazine-3-thione (Btsc, in complexes 1 and 3) or 5,6-diphenyltriazine-3-one (Bsc, in complexes 2 and 4). The data were consistent with cis arrangement of the biphosphine ligands. For the Btsc and Bsc ligands, the data pointed to monoanionic bidentate coordination to ruthenium(II) through N,S and N,O, respectively. Single-crystal X-ray diffraction showed that complex 1 crystallized in the monoclinic system, space group P21/c. Determination of the cytotoxicity profiles of complexes 1-4 gave SI values ranging from 1.19 to 3.50 against the human lung adenocarcinoma cell line A549 and the non-tumor lung cell line MRC-5. Although the molecular docking studies suggested that the interaction between DNA and complex 4 was energetically favorable, the experimental results showed that they interacted weakly. Overall, our results demonstrated that these novel ruthenium(II) complexes have interesting in vitro antitumor potential and this study may contribute to further studies in medicinal inorganic chemistry.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Lung Neoplasms , Ruthenium , Semicarbazones , Humans , Coordination Complexes/chemistry , Ruthenium/pharmacology , Ruthenium/chemistry , Cell Line, Tumor , Ligands , Molecular Docking Simulation , Semicarbazones/pharmacology , Antineoplastic Agents/chemistry , Apoptosis , Lung Neoplasms/drug therapy , Cell Movement , Lung
2.
Dalton Trans ; 49(45): 16474-16487, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32914824

ABSTRACT

Novel silver(i) complexes of the type [AgCl(PPh3)2(L)] {PPh3 = triphenylphosphine; L = VTSC = 3-methoxy-4-hydroxybenzaldehyde thiosemicarbazone (1); VMTSC = 3-methoxy-4-[2-(morpholine-1-yl)ethoxy]benzaldehyde thiosemicarbazone (2); VPTSC = 3-methoxy-4-[2-(piperidine-1-yl)ethoxy]benzaldehyde thiosemicarbazone (3)} were synthesized and fully characterized by spectroscopic techniques. The molecular structures of complexes 2 and 3 were determined by single crystal X-ray diffraction. Compounds 1-3 exhibited appreciable cytotoxic activity against human tumor cells (lung A549, breast MDA-MB-231 and MCF-7) with IC50 values in 48 h of incubation ranging from 5.6 to 18 µM. Cellular uptake studies showed that complexes 1-3 were efficiently internalized after 3 hours of treatment in MDA-MB-231 cells. The effects of complex 1 on the cell morphology, cell cycle, induction of apoptosis, mitochondrial membrane potential (Δψm), and reactive oxygen species (ROS) production have been evaluated in triple negative breast cancer (TNBC) cells MDA-MB-231. Our results showed that complex 1 induced typical morphological alterations of cell death, an increase in cells at the sub-G1 phase, apoptosis, and mitochondrial membrane depolarization. Furthermore, DNA binding studies evidenced that 1 can bind to ct-DNA and does so without modifying the B-structure of the DNA, but that the binding is weak compared to that of Hoechst 33258.


Subject(s)
Apoptosis/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Phosphines/chemistry , Semicarbazones/chemistry , Silver/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , G1 Phase/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects
3.
Dalton Trans ; 49(16): 5264-5275, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32242564

ABSTRACT

New silver(i) compounds containing 2-formylpyridine-N(4)-R-thiosemicarbazones and 1,10-phenanthroline (phen) were synthesized and characterized by spectroscopic techniques (IR and NMR), elemental analysis, ESI-MS and molar conductance measurements. In these complexes, both phen and thiosemicarbazone ligands are coordinated in a chelating bidentate fashion. Compounds 1-3 not only showed good in vitro antiproliferative activity against human lung (A549) and breast tumor cells (MDA-MB-231 and MCF-7), with IC50 values ranging from 1.49 to 20.90 µM, but were also demonstrated to be less toxic towards human breast non-tumor cells (MCF-10A). Cellular uptake studies indicated that compounds 1-3 were taken up by the MDA-MB-231 cells in 6 hours. Cell death assays in the MDA-MB-231 cells were conducted with compound 1 aiming to evaluate its effects on cell morphology, induction of apoptosis, the cell cycle, reactive oxygen species (ROS) formation and mitochondrial membrane potential (Δψm). Compound 1 caused morphological changes, such as cell shrinkage and rounding, increased the sub-G1 phase population, and induced apoptotic cell death, ROS formation and loss of mitochondrial membrane potential (Δψm). DNA binding results revealed that 1 interacted with the ct-DNA minor groove. Complexes 1-3 also exhibited good in vitro activity against M. tuberculosis H37Rv, with MIC values ranging from 3.37 to 4.65 µM.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Coordination Complexes/pharmacology , Phenanthrolines/pharmacology , Silver/pharmacology , Thiosemicarbazones/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Molecular Structure , Phenanthrolines/chemistry , Reactive Oxygen Species/metabolism , Silver/chemistry , Structure-Activity Relationship , Thiosemicarbazones/chemistry
4.
Anticancer Agents Med Chem ; 19(5): 645-654, 2019.
Article in English | MEDLINE | ID: mdl-30370858

ABSTRACT

BACKGROUND: Triple Negative Breast Cancer (TNBC) represents the approximately 15% of breast cancers that lack expression of Estrogen (ER) and Progesterone Receptors (PR) and do not exhibit amplification of the human epidermal growth factor receptor 2 (HER2) gene, imposing difficulties to treatment. Interactions between tumor cells and their microenvironment facilitate tumor cell invasion in the surrounding tissues, intravasation through newly formed vessels, and dissemination to form metastasis. To treat metastasis from breast and many other cancer types, chemotherapy is one of the most extensively used methods. However, its efficacy and safety remain a primary concern, as well as its toxicity and other side effects. Thus, there is increasing interest in natural antitumor agents. In a previous work, we have demonstrated that [10]-gingerol is able to revert malignant phenotype in breast cancer cells in 3D culture and, moreover, to inhibit the dissemination of TNBC to multiple organs including lung, bone and brain, in spontaneous and experimental in vivo metastasis assays in mouse model. OBJECTIVES: This work aims to investigate the in vitro effects of [10]-gingerol, using human MDA-MB-231TNBC cells, in comparison to non-tumor MCF-10A breast cells, in order to understand the antitumor and antimetastatic effects found in vivo and in a 3D environment. METHODS: We investigated different steps of the metastatic process in vitro, such as cell migration, invasion, adhesion and MMP activity. In addition, we analyzed the anti-apoptotic and genotoxic effects of [10]-gingerol using PEAnnexin, DNA fragmentation, TUNEL and comet assays, respectively. RESULTS: [10]-gingerol was able to inhibit cell adhesion, migration, invasion and to induce apoptosis more effectively in TNBC cells, when compared to non-tumor cells, demonstrating that these mechanisms can be involved in the antitumor and antimetastatic effects of [10]-gingerol, found both in 3D culture and in vivo. CONCLUSION: Taken together, results found here are complementary to previous studies of our group and others and demonstrate that additional mechanisms, besides apoptotic cell death, is used by [10]-gingerol to accomplish its antitumor and antimetastatic effects. Our results indicate a potential for this natural compound as an antitumor molecule or as an adjuvant for chemotherapeutics already used in the clinic.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Catechols/pharmacology , Fatty Alcohols/pharmacology , Neoplasm Metastasis/prevention & control , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Female , Humans , Mice , Tumor Microenvironment
5.
Oncotarget ; 8(42): 72260-72271, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-29069785

ABSTRACT

There is increasing interest in the use of non-toxic natural products for the treatment of various pathologies, including cancer. In particular, biologically active constituents of the ginger oleoresin (Zingiber officinale Roscoe) have been shown to mediate anti-tumour activity and to contribute to the anti-inflammatory, antioxidant, antimicrobial, and antiemetic properties of ginger. Here we report on the inhibitory properties of [10]-gingerol against metastatic triple negative breast cancer (TNBC) in vitro and in vivo. We show that [10]-gingerol concentration-dependently induces apoptotic death in mouse and human TNBC cell lines in vitro. In addition, [10]-gingerol is well tolerated in vivo, induces a marked increase in caspase-3 activation and inhibits orthotopic tumour growth in a syngeneic mouse model of spontaneous breast cancer metastasis. Importantly, using both spontaneous and experimental metastasis assays, we show for the first time that [10]-gingerol significantly inhibits metastasis to multiple organs including lung, bone and brain. Remarkably, inhibition of brain metastasis was observed even when treatment was initiated after surgical removal of the primary tumour. Taken together, these results indicate that [10]-gingerol may be a safe and useful complementary therapy for the treatment of metastatic breast cancer and warrant further investigation of its efficacy, either alone or in combination with standard systemic therapies, in pre-clinical models of metastatic breast cancer and in patients.

6.
PLoS One ; 12(9): e0183275, 2017.
Article in English | MEDLINE | ID: mdl-28898246

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype. The high rate of metastasis associated to the fact that these cells frequently display multidrug resistance, make the treatment of metastatic disease difficult. Development of antitumor metal-based drugs was started with the discovery of cisplatin, however, the severe side effects represent a limitation for its clinical use. Ruthenium (Ru) complexes with different ligands have been successfully studied as prospective antitumor drugs. In this work, we demonstrated the activity of a series of biphosphine bipyridine Ru complexes (1) [Ru(SO4)(dppb)(bipy)], (2) [Ru(CO3)(dppb)(bipy)], (3) [Ru(C2O4)(dppb)(bipy)] and (4) [Ru(CH3CO2)(dppb)(bipy)]PF6 [where dppb = 1,4-bis(diphenylphosphino)butane and bipy = 2,2'-bipyridine], on proliferation of TNBC (MDA-MB-231), estrogen-dependent breast tumor cells (MCF-7) and a non-tumor breast cell line (MCF-10A). Complex (4) was most effective among the complexes and was selected to be further investigated on effects on tumor cell adhesion, migration, invasion and in apoptosis. Moreover, DNA and HSA binding properties of this complex were also investigated. Results show that complex (4) was more efficient inhibiting proliferation of MDA-MB-231 cells over non-tumor cells. In addition, complex (4) was able to inhibit MDA-MB231 cells adhesion, migration and invasion and to induce apoptosis and inhibit MMP-9 secretion in TNBC cells. Complex (4) should be further investigated in vivo in order to stablish its potential to improve breast cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Ruthenium/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Coordination Complexes/toxicity , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , Female , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Ruthenium/chemistry , Ruthenium/toxicity , Triple Negative Breast Neoplasms , Tumor Stem Cell Assay
7.
Anal Biochem ; 488: 14-8, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26247715

ABSTRACT

(1)H high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 (1)H HR-MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR-MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells.


Subject(s)
Breast Neoplasms/metabolism , Breast/metabolism , Metabolome , Acetone/metabolism , Biomarkers/metabolism , Brazil , Cell Line , Cell Line, Tumor , Ethanol/metabolism , Female , Glucose/metabolism , Humans , Magnetic Resonance Spectroscopy , Metabolomics/methods , Nuclear Magnetic Resonance, Biomolecular , Phosphorylcholine/metabolism
8.
Med Chem ; 11(8): 736-46, 2015.
Article in English | MEDLINE | ID: mdl-25967047

ABSTRACT

Selective Estrogen Receptor Modulators (SERMs) are characteristically capable of being antagonist and agonist of estrogen receptors and, therefore, they can inhibit or stimulate estrogen production in different tissues. Aiming to contribute to the identification of new synthetic SERMs candidates, the basic skeletons of raloxifene and tamoxifene were used as model. Here of, a set of 2,3-diaryl-quinoxalines having 2-(piperidin-1- yl)ethanol in the side chain have been synthesized and evaluated against human mammary carcinoma cells estrogen dependent (MCF-7), as well as in recombinant yeast assays (RYA) expressing estrogen receptor. Compound LSPN332 showed 40% inhibition of MCF-7 and EC50=290.6 µM in RYA. The efficient synthesis of 2,3-diarylquinoxalines represents an excellent opportunity to identify new SERMs, and should therefore be of interest to the medicinal chemistry community.


Subject(s)
Drug Design , Quinoxalines/chemical synthesis , Quinoxalines/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Ligands , MCF-7 Cells , Molecular Structure , Quinoxalines/chemistry , Structure-Activity Relationship
9.
Mini Rev Med Chem ; 14(4): 313-21, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24552266

ABSTRACT

For many years, ginger or ginger root, the rhizome of the plant Zingiber officinale, has been consumed as a delicacy, medicine, or spice. Several studies have been conducted on the medicinal properties of ginger against various disorders, including cancer. Cancer is the second leading cause of death, and chemoprevention is defined as the use of natural or synthetic substances to prevent cancer initiation or progression. Evidence that ginger-derived compounds have inhibitory effects on various cancer cell types is increasingly being reported in the scientific literature. In this review we focused on the cancer chemopreventive effects of [6]-gingerol, the major pungent component of ginger, and its impact on different steps of the metastatic process.


Subject(s)
Anticarcinogenic Agents/pharmacology , Apoptosis/drug effects , Catechols/pharmacology , Cell Movement/drug effects , Fatty Alcohols/pharmacology , Neoplasms/prevention & control , Angiogenesis Inducing Agents/chemistry , Angiogenesis Inducing Agents/pharmacology , Animals , Anticarcinogenic Agents/chemistry , Anticarcinogenic Agents/therapeutic use , Catechols/chemistry , Catechols/therapeutic use , Fatty Alcohols/chemistry , Fatty Alcohols/therapeutic use , Zingiber officinale/chemistry , Zingiber officinale/metabolism , Humans , Neoplasms/drug therapy , Reactive Oxygen Species/metabolism
10.
Anticancer Agents Med Chem ; 13(10): 1645-53, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23869780

ABSTRACT

Cancer is the second leading cause of death, preceded only by cardiovascular diseases, and there is epidemiological evidence that demonstrate this tendency is emerging worldwide. Brazil has an extensive vegetal biodiversity with more than 55,000 species listed. Such biodiversity collaborates with the finding of compounds which could be the basis for the design of new anti-tumor drugs, with fewer side effects than the conventional chemotherapy used currently. Cedrelone is a limonoid isolated from Trichilia catigua (Meliaceae) which is a native Brazilian plant. This study demonstrates that cedrelone inhibits proliferation, adhesion, migration and invasion of breast tumor cells from the line MDA-MB-231. The effects of cell migration and invasion on MDA-MB-231 cell may be explained, at least in part, by the ability of cedrelone to inhibit MMP activity. We also demonstrate that cedrelone is able to induce apoptosis in MDA-MB-231 cells. There are only a few works investigating the effect of limonoids in cellular processes closely related to tumor progression such as adhesion, migration and invasion. To the best of our knowledge, this is the first work describing the effects of a limonoid on tumor and non-tumor cell adhesion process.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Epithelial Cells/drug effects , Fruit/chemistry , Meliaceae/chemistry , Triterpenes/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Epithelial Cells/enzymology , Epithelial Cells/pathology , Female , Humans , Inhibitory Concentration 50 , Limonins , Mammary Glands, Human/drug effects , Mammary Glands, Human/enzymology , Mammary Glands, Human/pathology , Matrix Metalloproteinases/metabolism , Molecular Structure , Triterpenes/chemistry , Triterpenes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...