Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 65(21): 215015, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32756019

ABSTRACT

BrachyView is a novel in-body imaging system developed to provide real-time intraoperative dosimetry for low dose rate prostate brachytherapy treatments. Seed positions can be reconstructed after in-vivo implantation using a high-resolution pinhole gamma camera inserted into the patient rectum. The obtained data is a set of 2D projections of the seeds on the image plane. The 3D reconstruction algorithm requires the identification of the seed's centre of mass. This work presents the development and techniques adopted to build an algorithm that provides the means for fully automatic seed centre of mass identification and 3D position reconstruction for real-time applications. The algorithm presented uses a local feature detector, speeded up robust features, to perform detection of brachytherapy seed 2D projections from images, allowing for robust seed identification. Initial results have been obtained with datasets of 30, 96 and 98 I-125 brachytherapy seeds implanted into a prostate gel phantom. It can detect 97% of seeds and correctly match 97% of seeds. The average overall computation time of 2.75 s per image and improved reconstruction accuracy of 22.87% for the 98 seed dataset was noted. Elimination processes for initial false positive detection removal have shown to be extremely effective, resulting in a 99.9% reduction of false positives, and when paired with automatic frame alignment and subtraction procedures allows for the effective removal of excess counts generated by previously implanted needles. The proposed algorithm will allow the BrachyView system to be used as a real-time intraoperative dosimetry tool for low dose rate prostate brachytherapy treatments.


Subject(s)
Algorithms , Brachytherapy/methods , Prostheses and Implants , Radiation Dosage , Automation , Humans , Iodine Radioisotopes/therapeutic use , Male , Phantoms, Imaging , Prostatic Neoplasms/radiotherapy , Radiometry , Radiotherapy Dosage , Subtraction Technique , Time Factors
2.
Phys Med ; 66: 66-76, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31563727

ABSTRACT

PURPOSE: BrachyView is a novel in-body imaging system developed with the objective to provide real-time intraoperative dosimetry for low dose rate (LDR) prostate brachytherapy treatments. The BrachyView coordinates combined with conventional transrectal ultrasound (TRUS) imaging, provides the possibility to localise the effective position of the implanted seeds inside the prostate volume, providing a unique tool for intra-operative verification of the quality of the implantation. This research presents the first complete LDR brachytherapy plan reconstructed by the BrachyView system and is used to evaluate the effectiveness of an imaging algorithm with baseline subtraction. METHODS: A plan featuring 98 I-125 brachytherapy seeds, with an average activity of 0.248 mCi, were implanted into a prostate gel phantom under TRUS guidance. Images of implanted seeds were obtained by the BrachyView after the implantation of seeds. The baseline subtraction algorithm is applied as a pixel-to-pixel counts subtraction and is applied to every second projection obtained after the implantation of each needle. Seed positions and effectiveness of the baseline reconstruction in the identification of seeds were verified by a high-resolution post-implant CT scan. RESULTS: A complete brachytherapy plan has been reconstructed with a 100% detection rate. This is possible due to the effectiveness of the baseline subtraction, with its application an overall increase of 11.3% in position accuracy and 8.2% increase in detection rate was noted. CONCLUSION: It has been demonstrated that the BrachyView system shows the potential to be a solution to providing clinics with the means for intraoperative dosimetry for LDR prostate brachytherapy treatments.


Subject(s)
Algorithms , Brachytherapy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Subtraction Technique , Humans , Male , Phantoms, Imaging , Prostheses and Implants , Radiotherapy Dosage , Tomography, X-Ray Computed , Ultrasonography
3.
Phys Med Biol ; 64(8): 085002, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30808009

ABSTRACT

A prototype in-body gamma camera system with integrated trans-rectal ultrasound (TRUS) and associated real-time image acquisition and analysis software was developed for intraoperative source tracking in high dose rate (HDR) brachytherapy. The accuracy and temporal resolution of the system was validated experimentally using a deformable tissue-equivalent prostate gel phantom and a full clinical HDR treatment plan. The BrachyView system was able to measure 78% of the 200 source positions with an accuracy of better than 1 mm. A minimum acquisition time of 0.28 s/frame was required to achieve this accuracy, restricting dwell times to a minimum of 0.3 s. Additionally, the performance of the BrachyView-TRUS fusion probe for mapping the spatial location of the tracked source within the prostate volume was evaluated. A global coordinate system was defined by scanning the phantom with the probe in situ using a CT scanner, and was subsequently used for co-registration of the BrachyView and TRUS fields of view (FoVs). TRUS imaging was used to segment the prostate volume and reconstruct it into a three-dimensional (3D) image. Fusion of the estimated source locations with the 3D prostate image was performed using integrated 3D visualisation software. HDR BrachyView is demonstrated to be a valuable tool for intraoperative source tracking in HDR brachytherapy, capable of resolving source dwell locations relative to the prostate anatomy when combined with TRUS.


Subject(s)
Brachytherapy/methods , Prostatic Neoplasms/diagnostic imaging , Software , Ultrasonography/methods , Brachytherapy/instrumentation , Gamma Cameras , Humans , Male , Phantoms, Imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Ultrasonography/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...