Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Muscle Nerve ; 56(5): 954-962, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27977854

ABSTRACT

INTRODUCTION: Stroke is a leading cause of disability worldwide. High-intensity physical training can improve muscle strength and gait speed, but adaptive mechanisms at the muscle cellular level are largely unknown. METHODS: Outpatients with poststroke hemiparesis participated in a 3-month rehabilitation program combining high-intensity strength and body-weight supported treadmill-training. Biopsies sampled bilaterally from vastus lateralis muscles, before, after, and at 1-year follow-up after intervention, were analyzed for fiber size, type, and capillarization. RESULTS: At baseline, paretic lower limbs had smaller muscle fiber size and lower type I and IIA and higher type IIX percentages than nonparetic lower limbs. Paretic lower limbs had increased type IIA fibers after training. At follow-up, no difference between the lower limbs remained. CONCLUSIONS: Although high-intensity training appeared not to induce changes in fiber size or capillarization, increased type IIA fiber percentages may contribute to muscle power and endurance, which is crucial for functional capacity. Muscle Nerve 56: 954-962, 2017.


Subject(s)
Exercise Therapy/standards , Muscle Fibers, Skeletal/physiology , Physical Endurance/physiology , Stroke Rehabilitation , Stroke/pathology , Stroke/therapy , Adult , Biopsy , Female , Humans , Male , Middle Aged , Muscle Fibers, Skeletal/pathology , Muscle Strength , Young Adult
2.
J Strength Cond Res ; 25(10): 2808-17, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21904232

ABSTRACT

Hemiparesis-disability and muscle weakness of 1 side of the body-is a common consequence of stroke. High-intensity strength training may be beneficial to regain function, but strength coaches in the field of rehabilitation need evidence-based guidelines. The purpose of this study was to evaluate the effect of intensive physical rehabilitation on neuromuscular and functional adaptations in outpatients suffering from hemiparesis after stroke. A within-subject repeated-measures design with the paretic leg as the experimental leg and the nonparetic leg as the control leg was used. Eleven outpatients with hemiparesis after stroke participated in 12 weeks of intensive physical rehabilitation comprising unilateral high-intensity strength training with near-maximal loads (4-12 repetition maximum) and body weight supported treadmill training. At baseline and 12-week follow-up, the patients went through testing consisting of isokinetic muscle strength, neuromuscular activation measured with electromyography (EMG), electrically evoked muscle twitch contractile properties, and gait performance (10-m Walk Test and 6-min Walk Test). After the 12-week conditioning program, knee extensor and flexor strength increased during all contraction modes and velocities in the paretic leg. Significant increases were observed for agonist EMG amplitude at slow concentric and slow eccentric contraction. Twitch torque increased, whereas twitch time-to-peak tension remained unchanged. By contrast, no significant changes were observed in the nonparetic control leg. Gait performance increased 52-68%. In conclusion, intensive physical rehabilitation after stroke leads to clinically relevant neuromuscular improvements, leading to increased voluntary strength during a wide range of contraction modes and velocities, and improved gait velocity. Strength training coaches working in the field of rehabilitation can use this knowledge to safely and efficiently add high-intensity strength training to existing rehabilitation paradigms.


Subject(s)
Adaptation, Physiological , Paresis/rehabilitation , Stroke Rehabilitation , Electromyography , Exercise Therapy , Female , Gait/physiology , Humans , Knee/physiopathology , Leg/physiopathology , Male , Middle Aged , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiopathology , Paresis/physiopathology , Stroke/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...