Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement (Amst) ; 12(1): e12053, 2020.
Article in English | MEDLINE | ID: mdl-32775596

ABSTRACT

Two of the key functions of arteries in the brain are (1) the well-recognized supply of blood via the vascular lumen and (2) the emerging role for the arterial walls as routes for the elimination of interstitial fluid (ISF) and soluble metabolites, such as amyloid beta (Aß), from the brain and retina. As the brain and retina possess no conventional lymphatic vessels, fluid drainage toward peripheral lymph nodes is mediated via transport along basement membranes in the walls of capillaries and arteries that form the intramural peri-arterial drainage (IPAD) system. IPAD tends to fail as arteries age but the mechanisms underlying the failure are unclear. In some people this is reflected in the accumulation of Aß plaques in the brain in Alzheimer's disease (AD) and deposition of Aß within artery walls as cerebral amyloid angiopathy (CAA). Knowledge of the dynamics of IPAD and why it fails with age is essential for establishing diagnostic tests for the early stages of the disease and for devising therapies that promote the clearance of Aß in the prevention and treatment of AD and CAA. This editorial is intended to introduce the rationale that has led to the establishment of the Clearance of Interstitial Fluid (ISF) and CSF (CLIC) group, within the Vascular Professional Interest Area of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment.

2.
Acta Neuropathol ; 140(4): 549-567, 2020 10.
Article in English | MEDLINE | ID: mdl-32651669

ABSTRACT

The proinflammatory cytokine interleukin 1 (IL-1) is crucially involved in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Herein, we studied the role of IL-1 signaling in blood-brain barrier (BBB) endothelial cells (ECs), astrocytes and microglia for EAE development, using mice with the conditional deletion of its signaling receptor IL-1R1. We found that IL-1 signaling in microglia and astrocytes is redundant for the development of EAE, whereas the IL-1R1 deletion in BBB-ECs markedly ameliorated disease severity. IL-1 signaling in BBB-ECs upregulated the expression of the adhesion molecules Vcam-1, Icam-1 and the chemokine receptor Darc, all of which have been previously shown to promote CNS-specific inflammation. In contrast, IL-1R1 signaling suppressed the expression of the stress-responsive heme catabolizing enzyme heme oxygenase-1 (HO-1) in BBB-ECs, promoting disease progression via a mechanism associated with deregulated expression of the IL-1-responsive genes Vcam1, Icam1 and Ackr1 (Darc). Mechanistically, our data emphasize a functional crosstalk of BBB-EC IL-1 signaling and HO-1, controlling the transcription of downstream proinflammatory genes promoting the pathogenesis of autoimmune neuroinflammation.


Subject(s)
Blood-Brain Barrier/enzymology , Encephalomyelitis, Autoimmune, Experimental/immunology , Endothelial Cells/enzymology , Heme Oxygenase-1/metabolism , Inflammation/immunology , Interleukin-1/immunology , Animals , Blood-Brain Barrier/immunology , Encephalomyelitis, Autoimmune, Experimental/enzymology , Gene Expression Regulation/immunology , Mice , Mice, Inbred C57BL , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...