Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ISME Commun ; 3(1): 60, 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37330540

ABSTRACT

Disentangling modes and fidelity of symbiont transmission are key for understanding host-symbiont associations in wild populations. In group-living animals, social transmission may evolve to ensure high-fidelity transmission of symbionts, since non-reproducing helpers constitute a dead-end for vertical transmission. We investigated symbiont transmission in the social spider Stegodyphus dumicola, which lives in family groups where the majority of females are non-reproducing helpers, females feed offspring by regurgitation, and individuals feed communally on insect prey. Group members share temporally stable microbiomes across generations, while distinct variation in microbiome composition exists between groups. We hypothesized that horizontal transmission of symbionts is enhanced by social interactions, and investigated transmission routes within (horizontal) and across (vertical) generations using bacterial 16S rRNA gene amplicon sequencing in three experiments: (i) individuals were sampled at all life stages to assess at which life stage the microbiome is acquired. (ii) a cross-fostering design was employed to test whether offspring carry the microbiome from their natal nest, or acquire the microbiome of the foster nest via social transmission. (iii) adult spiders with different microbiome compositions were mixed to assess whether social transmission homogenizes microbiome composition among group members. We demonstrate that offspring hatch symbiont-free, and bacterial symbionts are transmitted vertically across generations by social interactions with the onset of regurgitation feeding by (foster)mothers in an early life stage. Social transmission governs horizontal inter-individual mixing and homogenization of microbiome composition among nest mates. We conclude that temporally stable host-symbiont associations in social species can be facilitated and maintained by high-fidelity social transmission.

2.
FEMS Microbiol Ecol ; 98(2)2022 03 09.
Article in English | MEDLINE | ID: mdl-35147190

ABSTRACT

Host-symbiont interactions may form obligatory or facultative associations that are context dependent. Long-term studies on microbiome composition from wild populations should assess the temporal and spatial dynamics of host-microbe associations. We characterized the temporal and spatial variation in the bacterial microbiome composition in six populations of the social spider Stegodyphus dumicola for 2.5 years, using 16S rRNA gene amplicon sequencing of whole spiders. Individuals within a nest exhibit highly similar microbiomes, which remain stable over several generations and are not predictably affected by seasonal variation in temperature or humidity. This stability in nest microbiome is likely due to social transmission, whereas drift-like processes during new nest foundations explain variation in host microbiomes between nests. This is supported by the lack of obligate symbionts (i.e. no symbionts are present in all spider individuals). Quantitative PCR analyses showed that the bacterial load of individual spiders is stable in healthy nests but can increase dramatically in perishing nests. These increases are not driven by specific bacterial taxa but likely caused by loss of host immune control under deteriorating conditions. Spider nests show an annual survival rate of approximately 45%, but nest death is not correlated to microbiome composition, and the bacteria found in S. dumicola are not considered to be high virulence pathogens.


Subject(s)
Microbiota , Spiders , Animals , Bacteria/genetics , Bacterial Load , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Spiders/microbiology
3.
Front Genet ; 11: 555843, 2020.
Article in English | MEDLINE | ID: mdl-33193631

ABSTRACT

Organisms are exposed to temperatures that vary, for example on diurnal and seasonal time scales. Thus, the ability to behaviorally and/or physiologically respond to variation in temperatures is a fundamental requirement for long-term persistence. Studies on thermal biology in ectotherms are typically performed under constant laboratory conditions, which differ markedly from the variation in temperature across time and space in nature. Here, we investigate evolutionary adaptation and environmentally induced plastic responses of Drosophila simulans to no fluctuations (constant), predictable fluctuations or unpredictable fluctuations in temperature. We whole-genome sequenced populations exposed to 20 generations of experimental evolution under the three thermal regimes and examined the proteome after short-term exposure to the same three regimes. We find that unpredictable fluctuations cause the strongest response at both genome and proteome levels. The loci showing evolutionary responses were generally unique to each thermal regime, but a minor overlap suggests either common laboratory adaptation or that some loci were involved in the adaptation to multiple thermal regimes. The evolutionary response, i.e., loci under selection, did not coincide with induced responses of the proteome. Thus, genes under selection in fluctuating thermal environments are distinct from genes important for the adaptive plastic response observed within a generation. This information is key to obtain a better understanding and prediction of the effects of future increases in both mean and variability of temperatures.

4.
Biochim Biophys Acta ; 1864(2): 233-41, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26621385

ABSTRACT

Arthropods include chelicerates, crustaceans, and insects that all have open circulation systems and thus require different properties of their coagulation system than vertebrates. Although the clotting reaction in the chelicerate horseshoe crab (Family: Limulidae) has been described in details, the overall protein composition of the resulting clot has not been analyzed for any of the chelicerates. The largest class among the chelicerates is the arachnids, which includes spiders, ticks, mites, and scorpions. Here, we use a mass spectrometry-based approach to characterize the spider hemolymph clot proteome from the Brazilian whiteknee tarantula, Acanthoscurria geniculata. We focused on the insoluble part of the clot and demonstrated high concentrations of proteins homologous to the hemostasis-related and multimerization-prone von Willebrand factor. These proteins, which include hemolectins and vitellogenin homologous, were previously identified as essential components of the hemolymph clot in crustaceans and insects. Their presence in the spider hemolymph clot suggests that the origin of these proteins' function in coagulation predates the split between chelicerates and mandibulata. The clot proteome reveals that the major proteinaceous component is the oxygen-transporting and phenoloxidase-displaying abundant hemolymph protein hemocyanin, suggesting that this protein also plays a role in clot biology. Furthermore, quantification of the peptidome after coagulation revealed the simultaneous activation of both the innate immune system and the coagulation system. In general, many of the identified clot-proteins are related to the innate immune system, and our results support the previously suggested crosstalk between immunity and coagulation in arthropods.


Subject(s)
Hemocyanins/biosynthesis , Hemolymph/metabolism , Proteome/genetics , von Willebrand Factor/biosynthesis , Animals , Blood Coagulation/genetics , Brazil , Hemocyanins/genetics , Spiders/genetics , Spiders/metabolism , von Willebrand Factor/genetics
5.
Nat Commun ; 5: 3765, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24801114

ABSTRACT

Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk.


Subject(s)
Genome/genetics , Insect Proteins/genetics , Silk/genetics , Spider Venoms/genetics , Spiders/genetics , Animals , Base Sequence , Evolution, Molecular , Peptide Hydrolases/genetics , Phylogeny , Sequence Analysis, DNA
6.
PLoS One ; 8(2): e51176, 2013.
Article in English | MEDLINE | ID: mdl-23460779

ABSTRACT

The evolutionary history of widespread and specialized species is likely to cause a different genetic architecture of key ecological traits in the two species groups. This may affect how these two groups respond to inbreeding. Here we investigate inbreeding effects in traits related to performance in 5 widespread and 5 tropical restricted species of Drosophila with the aim of testing whether the two species groups suffered differently from inbreeding depression. The traits investigated were egg-to-adult viability, developmental time and resistance to heat, cold and desiccation. Our results showed that levels of inbreeding depression were species and trait specific and did not differ between the species groups for stress resistance traits. However, for the life history traits developmental time and egg-to adult viability, more inbreeding depression was observed in the tropical species. The results reported suggest that for life history traits tropical species of Drosophila will suffer more from inbreeding depression than widespread species in case of increases in the rate of inbreeding e.g. due to declines in population sizes.


Subject(s)
Drosophila/growth & development , Inbreeding , Tropical Climate , Animals , Female , Life Cycle Stages , Male , Quantitative Trait, Heritable , Species Specificity
7.
BMC Genomics ; 13: 70, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22333217

ABSTRACT

BACKGROUND: The evolution of sociality in spiders involves a transition from an outcrossing to a highly inbreeding mating system, a shift to a female biased sex ratio, and an increase in the reproductive skew among individuals. Taken together, these features are expected to result in a strong reduction in the effective population size. Such a decline in effective population size is expected to affect population genetic and molecular evolutionary processes, resulting in reduced genetic diversity and relaxed selective constraint across the genome. In the genus Stegodyphus, permanent sociality and regular inbreeding has evolved independently three times from periodic-social (outcrossing) ancestors. This genus is therefore an ideal model for comparative studies of the molecular evolutionary and population genetic consequences of the transition to a regularly inbreeding mating system. However, no genetic resources are available for this genus. RESULTS: We present the analysis of high throughput transcriptome sequencing of three Stegodyphus species. Two of these are periodic-social (Stegodyphus lineatus and S.tentoriicola) and one is permanently social (S. mimosarum). From non-normalized cDNA libraries, we obtained on average 7,000 putative uni-genes for each species. Three-way orthology, as predicted from reciprocal BLAST, identified 1,792 genes that could be used for cross-species comparison. Open reading frames (ORFs) could be deduced from 1,345 of the three-way alignments. Preliminary molecular analyses suggest a five- to ten-fold reduction in heterozygosity in the social S. mimosarum compared with the periodic-social species. Furthermore, an increased ratio of non-synonymous to synonymous polymorphisms in the social species indicated relaxed efficiency of selection. However, there was no sign of relaxed selection on the phylogenetic branch leading to S. mimosarum. CONCLUSIONS: The 1,792 three-way ortholog genes identified in this study provide a unique resource for comparative studies of the eco-genomics, population genetics and molecular evolution of repeated evolution of inbreeding sociality within the Stegodyphus genus. Preliminary analyses support theoretical expectations of depleted heterozygosity and relaxed selection in the social inbreeding species. Relaxed selection could not be detected in the S. mimosarum lineage, suggesting that there has been a recent transition to sociality in this species.


Subject(s)
Spiders/genetics , Transcriptome , Animals , Base Composition , Base Sequence , Codon , Evolution, Molecular , Female , High-Throughput Nucleotide Sequencing , Inbreeding , Male , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Polymorphism, Genetic , Selection, Genetic , Sequence Alignment , Spiders/classification
8.
Evolution ; 65(11): 3195-201, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22023585

ABSTRACT

Populations are from time to time exposed to stressful temperatures. Their thermal resistance levels are determined by inherent and plastic mechanisms, which are both likely to be under selection in natural populations. Previous studies on Drosophila species have shown that inherent resistance is highly species specific, and differs among ecotypes (e.g., tropical and widespread species). Apart from being exposed to thermal stress many small and fragmented populations face genetic challenges due to, for example, inbreeding. Inbreeding has been shown to reduce inherent resistance levels toward stressful temperatures, but whether adaptation to thermal stress through plastic responses also is affected by inbreeding is so far not clear. In this study, we test inherent cold resistance and the ability to respond plastically to temperature changes through developmental cold acclimation in inbred and outbred lines of five tropical and five widespread Drosophila species. Our results confirm that tropical species have lower cold resistance compared to widespread species, and show that (1) inbreeding reduces inherent cold resistance in both tropical and widespread species, (2) inbreeding does not affect the ability to respond adaptively to temperature acclimation, and (3) tropical species with low basal resistance show stronger adaptive plastic responses to developmental acclimation compared to widespread species.


Subject(s)
Acclimatization/physiology , Cold Temperature , Drosophila/growth & development , Ecotype , Inbreeding , Analysis of Variance , Animals , Australia , Drosophila/physiology , Species Specificity , Tropical Climate
9.
Proc Natl Acad Sci U S A ; 106(13): 5246-51, 2009 Mar 31.
Article in English | MEDLINE | ID: mdl-19307580

ABSTRACT

Flowering plants often prevent selfing through mechanisms of self-incompatibility (S.I.). The loss of S.I. has occurred many times independently, because it provides short-term advantages in situations where pollinators or mates are rare. The genus Capsella, which is closely related to Arabidopsis, contains a pair of closely related diploid species, the self-incompatible Capsella grandiflora and the self-compatible Capsella rubella. To elucidate the transition to selfing and its relationship to speciation of C. rubella, we have made use of comparative sequence information. Our analyses indicate that C. rubella separated from C. grandiflora recently ( approximately 30,000-50,000 years ago) and that breakdown of S.I. occurred at approximately the same time. Contrasting the nucleotide diversity patterns of the 2 species, we found that C. rubella has only 1 or 2 alleles at most loci, suggesting that it originated through an extreme population bottleneck. Our data are consistent with diploid speciation by a single, selfing individual, most likely living in Greece. The new species subsequently colonized the Mediterranean by Northern and Southern routes, at a time that also saw the spread of agriculture. The presence of phenotypic diversity within modern C. rubella suggests that this species will be an interesting model to understand divergence and adaptation, starting from very limited standing genetic variation.


Subject(s)
Capsella/classification , Genetic Speciation , Capsella/genetics , Ecology , Genes, Plant , Geography , Greece , Mediterranean Region , Molecular Sequence Data , Phylogeny
10.
Genetics ; 180(2): 1051-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18780752

ABSTRACT

We survey the distribution of haplotypes at the self-incompatibility (SI) locus of Arabidopsis lyrata (Brassicaceae) at 12 locations spread over the species' natural distribution in Iceland. Previous investigations of the system have identified 34 functionally different S haplotypes maintained by frequency-dependent selection and arranged them into four classes of dominance in their phenotypic expression. On the basis of this model of dominance and the island model of population subdivision, we compare the distribution of S haplotypes with that expected from population genetic theory. We observe 18 different S haplotypes, recessive haplotypes being more common than dominant ones, and dominant ones being shared by fewer populations. As expected, differentiation, although significant, is very low at the S locus even over distances of up to 300 km. The frequency of the most recessive haplotype is slightly larger than expected for a panmictic population, but consistent with a subdivided population with the observed differentiation. Frequencies in nature reflect effects of segregation distortion previously observed in controlled crosses. The dynamics of the S-locus variation are, however, well represented by a 12-island model and our simplified model of dominance interactions.


Subject(s)
Arabidopsis/genetics , Haplotypes , Selection, Genetic , Genes, Plant , Genetic Variation , Genetics, Population , Iceland , Phylogeny , Plant Proteins/genetics
11.
Mol Biol Evol ; 23(9): 1741-50, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16782760

ABSTRACT

A recent investigation found evidence that the transition of Arabidopsis thaliana from ancestral self-incompatibility (SI) to full self-compatibility occurred very recently and suggested that this occurred through a selective fixation of a nonfunctional allele (PsiSCR1) at the SCR gene, which determines pollen specificity in the incompatibility response. The main evidence is the lack of polymorphism at the SCR locus in A. thaliana. However, the nearby SRK gene, which determines stigma specificity in self-incompatible Brassicaceae species, has extremely high sequence diversity, with 3 very divergent SRK haplotypes, 2 of them present in multiple strains. Such high diversity is extremely unusual in this species, and it suggests the possibility that multiple, different SRK haplotypes may have been preserved from A. thaliana's self-incompatible ancestor. To study the evolution of S-haplotypes in the A. thaliana lineage, we searched the 2 most closely related Arabidopsis species Arabidopsis lyrata and Arabidopsis halleri, in which most populations have retained SI, and found SRK sequences corresponding to all 3 A. thaliana haplogroup sequences. Our molecular evolutionary analyses of these 3 S-haplotypes provide an independent estimate of the timing of the breakdown of SI and again exclude an ancient transition to selfing in A. thaliana. Comparing sequences of each of the 3 haplogroups between species, we find that 2 of the 3 SRK sequences (haplogroups A and B) are similar throughout their length, suggesting that little or no recombination with other SRK alleles has occurred since these species diverged. The diversity difference between the SCR and SRK loci in A. thaliana, however, suggests crossing-over, either within SRK or between the SCR and SRK loci. If the loss of SI involved fixation of the PsiSCR1 sequence, the exchange must have occurred during its fixation. Divergence between the species is much lower at the S-locus, compared with reference loci, and we discuss two contributory possibilities. Introgression may have occurred between A. lyrata and A. halleri and between their ancestral lineage and A. thaliana, at least for some period after their split. In addition, the coalescence times of sequences of individual S-haplogroups are expected to be less than those of alleles at non-S-loci.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Crossing Over, Genetic , Genes, Plant , Haplotypes , Selection, Genetic , Biological Evolution , Evolution, Molecular , Flowers/metabolism , Gene Expression Regulation, Plant , Phylogeny , Polymorphism, Genetic , Species Specificity , Time
12.
Genetics ; 172(1): 477-84, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16157671

ABSTRACT

Identification and characterization of the self-incompatibility genes in Brassicaceae species now allow typing of self-incompatibility haplotypes in natural populations. In this study we sampled and mapped all 88 individuals in a small population of Arabidopsis lyrata from Iceland. The self-incompatibility haplotypes at the SRK gene were typed for all the plants and some of their progeny and used to investigate the realized mating patterns in the population. The observed frequencies of haplotypes were found to change considerably from the parent generation to the offspring generation around their deterministic equilibria as determined from the known dominance relations among haplotypes. We provide direct evidence that the incompatibility system discriminates against matings among adjacent individuals. Multiple paternity is very common, causing mate availability among progeny of a single mother to be much larger than expected for single paternity.


Subject(s)
Arabidopsis/genetics , Breeding , Haplotypes/genetics , Inheritance Patterns/genetics , Plant Proteins/genetics , Protein Kinases/genetics , Selection, Genetic , DNA, Plant/analysis , Gene Frequency , Genetics, Population , Iceland
SELECTION OF CITATIONS
SEARCH DETAIL
...