Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 629(8011): 443-449, 2024 May.
Article in English | MEDLINE | ID: mdl-38658754

ABSTRACT

The Werner syndrome RecQ helicase WRN was identified as a synthetic lethal target in cancer cells with microsatellite instability (MSI) by several genetic screens1-6. Despite advances in treatment with immune checkpoint inhibitors7-10, there is an unmet need in the treatment of MSI cancers11-14. Here we report the structural, biochemical, cellular and pharmacological characterization of the clinical-stage WRN helicase inhibitor HRO761, which was identified through an innovative hit-finding and lead-optimization strategy. HRO761 is a potent, selective, allosteric WRN inhibitor that binds at the interface of the D1 and D2 helicase domains, locking WRN in an inactive conformation. Pharmacological inhibition by HRO761 recapitulated the phenotype observed by WRN genetic suppression, leading to DNA damage and inhibition of tumour cell growth selectively in MSI cells in a p53-independent manner. Moreover, HRO761 led to WRN degradation in MSI cells but not in microsatellite-stable cells. Oral treatment with HRO761 resulted in dose-dependent in vivo DNA damage induction and tumour growth inhibition in MSI cell- and patient-derived xenograft models. These findings represent preclinical pharmacological validation of WRN as a therapeutic target in MSI cancers. A clinical trial with HRO761 (NCT05838768) is ongoing to assess the safety, tolerability and preliminary anti-tumour activity in patients with MSI colorectal cancer and other MSI solid tumours.


Subject(s)
Antineoplastic Agents , Drug Discovery , Enzyme Inhibitors , Microsatellite Instability , Neoplasms , Synthetic Lethal Mutations , Werner Syndrome Helicase , Animals , Female , Humans , Mice , Administration, Oral , Allosteric Regulation/drug effects , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Clinical Trials as Topic , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DNA Damage/drug effects , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Mice, Nude , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Protein Domains , Reproducibility of Results , Suppression, Genetic , Synthetic Lethal Mutations/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Werner Syndrome Helicase/antagonists & inhibitors , Werner Syndrome Helicase/genetics , Werner Syndrome Helicase/metabolism , Xenograft Model Antitumor Assays
2.
ChemMedChem ; 19(8): e202300613, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38334957

ABSTRACT

The Werner Syndrome RecQ helicase (WRN) is a synthetic lethal target of interest for the treatment of cancers with microsatellite instability (MSI). Different hit finding approaches were initially tested. The identification of WRN inhibitors proved challenging due to a high propensity for artefacts via protein interference, i. e., hits inhibiting WRN enzymatic activities through multiple, unspecific mechanisms. Previously published WRN Helicase inhibitors (ML216, NSC19630 or NSC617145) were characterized in an extensive set of biochemical and biophysical assays and could be ruled out as specific WRN helicase probes. More innovative screening strategies need to be developed for successful drug discovery of non-covalent WRN helicase inhibitors.


Subject(s)
DNA Helicases , Thiadiazoles , Urea , DNA Helicases/metabolism , Werner Syndrome Helicase/metabolism
3.
Nat Commun ; 12(1): 2442, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903593

ABSTRACT

The transcription factor PAX8 is critical for the development of the thyroid and urogenital system. Comprehensive genomic screens furthermore indicate an additional oncogenic role for PAX8 in renal and ovarian cancers. While a plethora of PAX8-regulated genes in different contexts have been proposed, we still lack a mechanistic understanding of how PAX8 engages molecular complexes to drive disease-relevant oncogenic transcriptional programs. Here we show that protein isoforms originating from the MECOM locus form a complex with PAX8. These include MDS1-EVI1 (also called PRDM3) for which we map its interaction with PAX8 in vitro and in vivo. We show that PAX8 binds a large number of genomic sites and forms transcriptional hubs. At a subset of these, PAX8 together with PRDM3 regulates a specific gene expression module involved in adhesion and extracellular matrix. This gene module correlates with PAX8 and MECOM expression in large scale profiling of cell lines, patient-derived xenografts (PDXs) and clinical cases and stratifies gynecological cancer cases with worse prognosis. PRDM3 is amplified in ovarian cancers and we show that the MECOM locus and PAX8 sustain in vivo tumor growth, further supporting that the identified function of the MECOM locus underlies PAX8-driven oncogenic functions in ovarian cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , MDS1 and EVI1 Complex Locus Protein/genetics , Ovarian Neoplasms/genetics , PAX8 Transcription Factor/genetics , Animals , Cell Line, Tumor , Female , HEK293 Cells , Humans , MDS1 and EVI1 Complex Locus Protein/metabolism , Mice, Nude , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , PAX8 Transcription Factor/metabolism , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tumor Burden/genetics , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...