Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NAR Genom Bioinform ; 5(4): lqad095, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37942285

ABSTRACT

Functional gene embeddings, numerical vectors capturing gene function, provide a promising way to integrate functional gene information into machine learning models. These embeddings are learnt by applying self-supervised machine-learning algorithms on various data types including quantitative omics measurements, protein-protein interaction networks and literature. However, downstream evaluations comparing alternative data modalities used to construct functional gene embeddings have been lacking. Here we benchmarked functional gene embeddings obtained from various data modalities for predicting disease-gene lists, cancer drivers, phenotype-gene associations and scores from genome-wide association studies. Off-the-shelf predictors trained on precomputed embeddings matched or outperformed dedicated state-of-the-art predictors, demonstrating their high utility. Embeddings based on literature and protein-protein interactions inferred from low-throughput experiments outperformed embeddings derived from genome-wide experimental data (transcriptomics, deletion screens and protein sequence) when predicting curated gene lists. In contrast, they did not perform better when predicting genome-wide association signals and were biased towards highly-studied genes. These results indicate that embeddings derived from literature and low-throughput experiments appear favourable in many existing benchmarks because they are biased towards well-studied genes and should therefore be considered with caution. Altogether, our study and precomputed embeddings will facilitate the development of machine-learning models in genetics and related fields.

2.
Proc Natl Acad Sci U S A ; 119(16): e2118210119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35412913

ABSTRACT

The improving access to increasing amounts of biomedical data provides completely new chances for advanced patient stratification and disease subtyping strategies. This requires computational tools that produce uniformly robust results across highly heterogeneous molecular data. Unsupervised machine learning methodologies are able to discover de novo patterns in such data. Biclustering is especially suited by simultaneously identifying sample groups and corresponding feature sets across heterogeneous omics data. The performance of available biclustering algorithms heavily depends on individual parameterization and varies with their application. Here, we developed MoSBi (molecular signature identification using biclustering), an automated multialgorithm ensemble approach that integrates results utilizing an error model-supported similarity network. We systematically evaluated the performance of 11 available and established biclustering algorithms together with MoSBi. For this, we used transcriptomics, proteomics, and metabolomics data, as well as synthetic datasets covering various data properties. Profiting from multialgorithm integration, MoSBi identified robust group and disease-specific signatures across all scenarios, overcoming single algorithm specificities. Furthermore, we developed a scalable network-based visualization of bicluster communities that supports biological hypothesis generation. MoSBi is available as an R package and web service to make automated biclustering analysis accessible for application in molecular sample stratification.


Subject(s)
Disease , Gene Expression Profiling , Metabolomics , Patients , Proteomics , Software , Algorithms , Cluster Analysis , Disease/classification , Humans , Patients/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...