Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 1(4): pgac158, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36329725

ABSTRACT

Opioid drugs influence multiple brain circuits in parallel to produce analgesia as well as side effects, including respiratory depression. At present, we do not have real-time clinical biomarkers of these brain effects. Here, we describe the results of an experiment to characterize the electroencephalographic signatures of fentanyl in humans. We find that increasing concentrations of fentanyl induce a frontal theta band (4 to 8 Hz) signature distinct from slow-delta oscillations related to sleep and sedation. We also report that respiratory depression, quantified by decline in an index of instantaneous minute ventilation, occurs at ≈1700-fold lower concentrations than those that produce sedation as measured by reaction time. The electroencephalogram biomarker we describe could facilitate real-time monitoring of opioid drug effects and enable more precise and personalized opioid administration.

2.
Sci Rep ; 12(1): 15940, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153353

ABSTRACT

Phase amplitude coupling (PAC) is thought to play a fundamental role in the dynamic coordination of brain circuits and systems. There are however growing concerns that existing methods for PAC analysis are prone to error and misinterpretation. Improper frequency band selection can render true PAC undetectable, while non-linearities or abrupt changes in the signal can produce spurious PAC. Current methods require large amounts of data and lack formal statistical inference tools. We describe here a novel approach for PAC analysis that substantially addresses these problems. We use a state space model to estimate the component oscillations, avoiding problems with frequency band selection, nonlinearities, and sharp signal transitions. We represent cross-frequency coupling in parametric and time-varying forms to further improve statistical efficiency and estimate the posterior distribution of the coupling parameters to derive their credible intervals. We demonstrate the method using simulated data, rat local field potentials (LFP) data, and human EEG data.


Subject(s)
Brain , Animals , Brain/physiology , Electroencephalography , Humans , Rats
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4740-4743, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441408

ABSTRACT

Neural oscillations reflect the coordinated activity of neuronal populations across a wide range of temporal and spatial scales, and are thought to play a significant role in mediating many aspects of brain function, including atten- tion, cognition, sensory processing, and consciousness. Brain oscillations are typically analyzed using frequency domain methods such as nonparametric spectral analysis, or time domain methods based on linear bandpass filtering. A typical analysis might seek to estimate the power within an oscillation sitting within a particular frequency band. A common approach to this problem is to estimate the signal power within that band, in frequency domain using the power spectrum, or in time domain by estimating the power or variance in a bandpass filtered signal. A major conceptual flaw in this approach is that neural systems, like many physiological or physical systems, have inherent broad-band 1/P' dynamics, whether or not an oscillation is present. Calculating power-in-band, or power in a bandpass filtered signal, can therefore be misleading, since such calculations do not distinguish between broadband power within the band of interest, and true underlying oscillations. In this paper, we present an approach for analyzing neural oscillations using a combination of linear oscillatory models. We estimate the parameters of these models using an expectation maximization (EM) algorithm, and employ AIC to select the appropriate model and identify the oscillations present in the data. We demonstrate the application of this method to univariate electroencephalogram (EEG) data recorded at quiet rest and during propofol-induced unconsciousness.


Subject(s)
Data Analysis , Electroencephalography , Algorithms , Brain , Unconsciousness
SELECTION OF CITATIONS
SEARCH DETAIL
...