Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol ; 133(4): 629-644, 2017 04.
Article in English | MEDLINE | ID: mdl-28124097

ABSTRACT

Mutations in codon 132 of isocitrate dehydrogenase (IDH) 1 are frequent in diffuse glioma, acute myeloid leukemia, chondrosarcoma and intrahepatic cholangiocarcinoma. These mutations result in a neomorphic enzyme specificity which leads to a dramatic increase of intracellular D-2-hydroxyglutarate (2-HG) in tumor cells. Therefore, mutant IDH1 protein is a highly attractive target for inhibitory drugs. Here, we describe the development and properties of BAY 1436032, a pan-inhibitor of IDH1 protein with different codon 132 mutations. BAY 1436032 strongly reduces 2-HG levels in cells carrying IDH1-R132H, -R132C, -R132G, -R132S and -R132L mutations. Cells not carrying IDH mutations were unaffected. BAY 1436032 did not exhibit toxicity in vitro or in vivo. The pharmacokinetic properties of BAY 1436032 allow for oral administration. In two independent experiments, BAY 1436032 has been shown to significantly prolong survival of mice intracerebrally transplanted with human astrocytoma carrying the IDH1R132H mutation. In conclusion, we developed a pan-inhibitor targeting tumors with different IDH1R132 mutations.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Astrocytoma/drug therapy , Benzimidazoles/pharmacology , Brain Neoplasms/drug therapy , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/genetics , Aniline Compounds/chemistry , Aniline Compounds/pharmacokinetics , Aniline Compounds/toxicity , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/toxicity , Astrocytoma/enzymology , Astrocytoma/genetics , Benzimidazoles/chemistry , Benzimidazoles/pharmacokinetics , Benzimidazoles/toxicity , Brain Neoplasms/enzymology , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/enzymology , Colonic Neoplasms/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/toxicity , Escherichia coli , Female , Glutarates/metabolism , HEK293 Cells , Humans , Isocitrate Dehydrogenase/metabolism , Mice, Inbred BALB C , Mice, Nude , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sarcoma/drug therapy , Sarcoma/enzymology , Sarcoma/genetics , Sf9 Cells , Xenograft Model Antitumor Assays
2.
Acta Neuropathol Commun ; 2: 19, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24529257

ABSTRACT

BACKGROUND: IDH mutations frequently occur in diffuse gliomas and result in a neo-enzymatic activity that results in reduction of α-ketoglutarate to D-2-hydroxyglutarate. In gliomas, the frequency of IDH1 mutations in codon 132 increases in the order R132L-R132S-R132G-R132C-R132H with R132H constituting more than 90% of all IDH1 mutations. RESULTS: We determined the levels of D-2-hydroxyglutarate in glioma tissues with IDH1 mutations. D-2-hydroxyglutarate levels increased in the order of R132H-R132C-R132S/R132G/R132L. We expressed and purified IDH1 wild type and mutant protein for biochemical characterization. Enzyme kinetics of mutant IDH protein correlated well with D-2-hydroxyglutarate production in cells with R132H exhibiting the highest and R132L the lowest KM for α-ketoglutarate. Addition of D-2-hydroxyglutarate to the medium of cell lines revealed an inhibitory effect at higher concentrations. Migration of LN229 increased at lower D-2-hydroxyglutarate concentrations while higher concentrations showed no effect. CONCLUSION: These findings may suggest natural selection against the rare IDH1R132 mutations in human glioma due to toxicity caused by high levels of D-2-hydroxyglutarate.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Glutarates/metabolism , Isocitrate Dehydrogenase/genetics , Mutation/genetics , Brain Neoplasms/metabolism , Cell Movement/genetics , Cell Survival/genetics , Glioma/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Isocitrate Dehydrogenase/metabolism , Mutagenesis/genetics , Mutant Proteins , Transfection , Tumor Stem Cell Assay
3.
Acta Neuropathol ; 124(6): 883-91, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23117877

ABSTRACT

Levels of (D)-2-hydroxyglutarate [D2HG, (R)-2-hydroxyglutarate] are increased in some metabolic diseases and in neoplasms with mutations in the isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) genes. Determination of D2HG is of relevance to diagnosis and monitoring of disease. Standard detection methods of D2HG levels are liquid-chromatography-mass spectrometry or gas-chromatography-mass spectrometry. Here we present a rapid, inexpensive and sensitive enzymatic assay for the detection of D2HG levels. The assay is based on the conversion of D2HG to α-ketoglutarate (αKG) in the presence of the enzyme (D)-2-hydroxyglutarate dehydrogenase (HGDH) and nicotinamide adenine dinucleotide (NAD(+)). Determination of D2HG concentration is based on the detection of stoichiometrically generated NADH. The quantification limit of the enzymatic assay for D2HG in tumor tissue is 0.44 µM and in serum 2.77 µM. These limits enable detection of basal D2HG levels in human tumor tissues and serum without IDH mutations. Levels of D2HG in frozen and paraffin-embedded tumor tissues containing IDH mutations or in serum from acute myeloid leukemia patients with IDH mutations are significantly higher and can be easily identified with this assay. In conclusion, the assay presented is useful for differentiating basal from elevated D2HG levels in tumor tissue, serum, urine, cultured cells and culture supernatants.


Subject(s)
Enzyme Assays/methods , Glutarates/analysis , Leukemia, Myeloid, Acute/diagnosis , Alcohol Oxidoreductases/analysis , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Glutarates/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Leukemia, Myeloid, Acute/genetics , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...