Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 4: 2785, 2013.
Article in English | MEDLINE | ID: mdl-24302011

ABSTRACT

Methane is an essential component of the global carbon cycle and one of the most powerful greenhouse gases, yet it is also a promising alternative source of carbon for the biological production of value-added chemicals. Aerobic methane-consuming bacteria (methanotrophs) represent a potential biological platform for methane-based biocatalysis. Here we use a multi-pronged systems-level approach to reassess the metabolic functions for methane utilization in a promising bacterial biocatalyst. We demonstrate that methane assimilation is coupled with a highly efficient pyrophosphate-mediated glycolytic pathway, which under oxygen limitation participates in a novel form of fermentation-based methanotrophy. This surprising discovery suggests a novel mode of methane utilization in oxygen-limited environments, and opens new opportunities for a modular approach towards producing a variety of excreted chemical products using methane as a feedstock.


Subject(s)
Methane/metabolism , Methylococcaceae/physiology , Catalysis , Formaldehyde/metabolism , Gene Expression Regulation, Bacterial/physiology , Genome, Bacterial , Oxidation-Reduction , Transcriptome
2.
Mol Oral Microbiol ; 28(1): 70-81, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23194602

ABSTRACT

The periodontal pathogen Porphyromonas gingivalis experiences a number of environmental conditions in the oral cavity, and must monitor and respond to a variety of environmental cues. However, the organism possesses only five full two-component systems, one of which is the hybrid system GppX. To investigate the regulon controlled by GppX we performed RNA-Seq on a ΔGppX mutant. Fifty-three genes were upregulated and 37 genes were downregulated in the ΔGppX mutant. Pathway analyses revealed no systemic function for GppX under nutrient-replete conditions; however, over 40% of the differentially abundant genes were annotated as encoding hypothetical proteins indicating a novel role for GppX. Abundance of small RNA was, in general, not affected by the absence of GppX. To further define the role of GppX with respect to regulation of a hypothetical protein observed with the greatest significant relative abundance change relative to a wild-type control, PGN_0151, we constructed a series of strains in which the ΔgppX mutation was complemented with a GppX protein containing specific domain and phosphotransfer mutations. The transmembrane domains, the DNA-binding domain and the phosphotransfer residues were all required for regulation of PGN_0151. In addition, binding of GppX to the PGN_0151 promoter regions was confirmed by an electrophoretic mobility shift assay. Both the ΔGppX mutant and a ΔPGN_0151 mutant were deficient in monospecies biofilm formation, suggesting a role for the GppX-PGN_0151 regulon in colonization and survival of the organism.


Subject(s)
Bacterial Proteins/genetics , Mutation/genetics , Porphyromonas gingivalis/genetics , Regulon/genetics , Alleles , AraC Transcription Factor/genetics , Aspartic Acid/genetics , Bacteriological Techniques , Biofilms/growth & development , Gene Expression Profiling , Gene Expression Regulation, Bacterial/genetics , Genes, Bacterial/genetics , Helix-Turn-Helix Motifs/genetics , Histidine Kinase , Humans , Membrane Proteins/genetics , Porphyromonas gingivalis/physiology , Promoter Regions, Genetic/genetics , Protein Kinases/genetics , Sequence Analysis, RNA , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...