Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Med Chem ; 14(6): 1002-1011, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37360399

ABSTRACT

Target 2035, an international federation of biomedical scientists from the public and private sectors, is leveraging 'open' principles to develop a pharmacological tool for every human protein. These tools are important reagents for scientists studying human health and disease and will facilitate the development of new medicines. It is therefore not surprising that pharmaceutical companies are joining Target 2035, contributing both knowledge and reagents to study novel proteins. Here, we present a brief progress update on Target 2035 and highlight some of industry's contributions.

2.
J Med Chem ; 66(5): 3431-3447, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36802665

ABSTRACT

USP21 belongs to the ubiquitin-specific protease (USP) subfamily of deubiquitinating enzymes (DUBs). Due to its relevance in tumor development and growth, USP21 has been reported as a promising novel therapeutic target for cancer treatment. Herein, we present the discovery of the first highly potent and selective USP21 inhibitor. Following high-throughput screening and subsequent structure-based optimization, we identified BAY-805 to be a non-covalent inhibitor with low nanomolar affinity for USP21 and high selectivity over other DUB targets as well as kinases, proteases, and other common off-targets. Furthermore, surface plasmon resonance (SPR) and cellular thermal shift assays (CETSA) demonstrated high-affinity target engagement of BAY-805, resulting in strong NF-κB activation in a cell-based reporter assay. To the best of our knowledge, BAY-805 is the first potent and selective USP21 inhibitor and represents a valuable high-quality in vitro chemical probe to further explore the complex biology of USP21.


Subject(s)
Signal Transduction , Ubiquitin-Specific Proteases , Gene Expression Regulation , Endopeptidases
3.
Drug Discov Today ; 27(6): 1560-1574, 2022 06.
Article in English | MEDLINE | ID: mdl-35202802

ABSTRACT

The year 2021 marks the 125th anniversary of the Bayer Chemical Research Laboratory in Wuppertal, Germany. A significant number of prominent small-molecule drugs, from Aspirin to Xarelto, have emerged from this research site. In this review, we shed light on historic cornerstones of small-molecule drug research, discussing current and future trends in drug discovery as well as providing a personal outlook on the future of drug research with a focus on small molecules.


Subject(s)
Anniversaries and Special Events , Pharmaceutical Research , Drug Discovery , Small Molecule Libraries/chemistry
4.
RSC Med Chem ; 13(1): 13-21, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35211674

ABSTRACT

Twenty years after the publication of the first draft of the human genome, our knowledge of the human proteome is still fragmented. The challenge of translating the wealth of new knowledge from genomics into new medicines is that proteins, and not genes, are the primary executers of biological function. Therefore, much of how biology works in health and disease must be understood through the lens of protein function. Accordingly, a subset of human proteins has been at the heart of research interests of scientists over the centuries, and we have accumulated varying degrees of knowledge about approximately 65% of the human proteome. Nevertheless, a large proportion of proteins in the human proteome (∼35%) remains uncharacterized, and less than 5% of the human proteome has been successfully targeted for drug discovery. This highlights the profound disconnect between our abilities to obtain genetic information and subsequent development of effective medicines. Target 2035 is an international federation of biomedical scientists from the public and private sectors, which aims to address this gap by developing and applying new technologies to create by year 2035 chemogenomic libraries, chemical probes, and/or biological probes for the entire human proteome.

5.
J Med Chem ; 63(20): 11639-11662, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32969660

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a rare and devastating chronic lung disease of unknown etiology. Despite the approved treatment options nintedanib and pirfenidone, the medical need for a safe and well-tolerated antifibrotic treatment of IPF remains high. The human prostaglandin F receptor (hFP-R) is widely expressed in the lung tissue and constitutes an attractive target for the treatment of fibrotic lung diseases. Herein, we present our research toward novel quinoline-based hFP-R antagonists, including synthesis and detailed structure-activity relationship (SAR). Starting from a high-throughput screening (HTS) hit of our corporate compound library, multiple parameter improvements-including increase of the relative oral bioavailability Frel from 3 to ≥100%-led to a highly potent and selective hFP-R antagonist with complete oral absorption from suspension. BAY-6672 (46) represents-to the best of our knowledge-the first reported FP-R antagonist to demonstrate in vivo efficacy in a preclinical animal model of lung fibrosis, thus paving the way for a new treatment option in IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/drug therapy , Lung/drug effects , Quinolines/chemical synthesis , Receptors, Prostaglandin/antagonists & inhibitors , Administration, Oral , Animals , Disease Models, Animal , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Lung/pathology , Male , Mice , Molecular Structure , Quinolines/chemistry , Quinolines/therapeutic use , Rats , Rats, Wistar , Structure-Activity Relationship
6.
ChemMedChem ; 13(10): 988-1003, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29485740

ABSTRACT

Small-molecule inhibitors of hypoxia-inducible factor prolyl hydroxylases (HIF-PHs) are currently under clinical development as novel treatment options for chronic kidney disease (CKD) associated anemia. Inhibition of HIF-PH mimics hypoxia and leads to increased erythropoietin (EPO) expression and subsequently increased erythropoiesis. Herein we describe the discovery, synthesis, structure-activity relationship (SAR), and proposed binding mode of novel 2,4-diheteroaryl-1,2-dihydro-3H-pyrazol-3-ones as orally bioavailable HIF-PH inhibitors for the treatment of anemia. High-throughput screening of our corporate compound library identified BAY-908 as a promising hit. The lead optimization program then resulted in the identification of molidustat (BAY 85-3934), a novel small-molecule oral HIF-PH inhibitor. Molidustat is currently being investigated in clinical phase III trials as molidustat sodium for the treatment of anemia in patients with CKD.


Subject(s)
Anemia/drug therapy , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Kidney Diseases/complications , Pyrazoles/pharmacology , Triazoles/pharmacology , Anemia/etiology , Animals , Binding Sites , Cell Line, Tumor , Drug Discovery , Humans , Mice , Molecular Structure , Protein Binding , Protein Conformation , Pyrazoles/therapeutic use , Structure-Activity Relationship , Triazoles/therapeutic use
7.
ChemMedChem ; 9(1): 61-6, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24285584

ABSTRACT

The transcription factors hypoxia-inducible factor-1 and -2 (HIF-1 and HIF-2) orchestrate a multitude of processes that allow tumor cells to survive under conditions of low oxygen and nutrients, and that lead to resistance to some apoptotic pathways and facilitate invasion and metastasis. Therefore, inhibition of transactivation by HIF has become an attractive target in cancer research. Herein we present the results of a cell-based screening approach that led to the discovery of substituted 1H-pyrazole-3-carboxamides. Chemical optimization of the hit class with respect to potency and metabolic stability is described; it resulted in novel 5-(1H-pyrazol-3-yl)-1,2,4-oxadiazoles that inhibit the hypoxia-induced accumulation of HIF-1α and HIF-2α. The HIF inhibitory potency in the screening cell system was improved from IC50 190 to 0.7 nM, and significant parts of the SAR are disclosed. For a key compound, the ability to suppress the hypoxia-induced expression of HIF target genes was studied in A549 human lung adenocarcinoma cells. The same compound shows a favorable pharmacokinetic profile in rats after i.v. and p.o. administration.


Subject(s)
Amides/chemistry , Cell Hypoxia , Oxadiazoles/chemistry , Pyrazoles/chemistry , Administration, Oral , Amides/pharmacokinetics , Amides/toxicity , Animals , Cell Line, Tumor , Cell Survival/drug effects , Half-Life , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Injections, Intravenous , Rats , Structure-Activity Relationship , Transcription, Genetic/drug effects
8.
Cancer Med ; 2(5): 611-24, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24403227

ABSTRACT

The activation of the transcription factor hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development, tumor progression, and resistance to chemo- and radiotherapy. In order to identify compounds targeting the HIF pathway, a small molecule library was screened using a luciferase-driven HIF-1 reporter cell line under hypoxia. The high-throughput screening led to the identification of a class of aminoalkyl-substituted compounds that inhibited hypoxia-induced HIF-1 target gene expression in human lung cancer cell lines at low nanomolar concentrations. Lead structure BAY 87-2243 was found to inhibit HIF-1α and HIF-2α protein accumulation under hypoxic conditions in non-small cell lung cancer (NSCLC) cell line H460 but had no effect on HIF-1α protein levels induced by the hypoxia mimetics desferrioxamine or cobalt chloride. BAY 87-2243 had no effect on HIF target gene expression levels in RCC4 cells lacking Von Hippel-Lindau (VHL) activity nor did the compound affect the activity of HIF prolyl hydroxylase-2. Antitumor activity of BAY 87-2243, suppression of HIF-1α protein levels, and reduction of HIF-1 target gene expression in vivo were demonstrated in a H460 xenograft model. BAY 87-2243 did not inhibit cell proliferation under standard conditions. However under glucose depletion, a condition favoring mitochondrial ATP generation as energy source, BAY 87-2243 inhibited cell proliferation in the nanomolar range. Further experiments revealed that BAY 87-2243 inhibits mitochondrial complex I activity but has no effect on complex III activity. Interference with mitochondrial function to reduce hypoxia-induced HIF-1 activity in tumors might be an interesting therapeutic approach to overcome chemo- and radiotherapy-resistance of hypoxic tumors.


Subject(s)
Electron Transport Complex I/antagonists & inhibitors , Lung Neoplasms/metabolism , Oxadiazoles/pharmacology , Pyrazoles/pharmacology , Animals , Antigens, Neoplasm/biosynthesis , Antigens, Neoplasm/genetics , Carbonic Anhydrase IX , Carbonic Anhydrases/biosynthesis , Carbonic Anhydrases/genetics , Cell Hypoxia/genetics , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Discovery/methods , Electron Transport Complex I/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Genes, Neoplasm , Genes, Reporter , Humans , Hypoxia-Inducible Factor 1/biosynthesis , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Nude , Molecular Sequence Data , Molecular Targeted Therapy/methods , Oxadiazoles/administration & dosage , Oxadiazoles/blood , Oxadiazoles/therapeutic use , Pyrazoles/administration & dosage , Pyrazoles/blood , Pyrazoles/therapeutic use , RNA, Small Interfering/genetics , Small Molecule Libraries , Tumor Burden/drug effects , Tumor Cells, Cultured , Von Hippel-Lindau Tumor Suppressor Protein/physiology , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...