Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Regen Biomater ; 10: rbad015, 2023.
Article in English | MEDLINE | ID: mdl-36937897

ABSTRACT

Collagen-based biomaterials are used widely as tissue engineering scaffolds because of their excellent bioactivity and their similarity to the natural ECM. The regeneration of healthy bone tissue requires simultaneous support for both osteoblasts and, where angiogenesis is intended, endothelial cells. Hence it is important to tailor carefully the biochemical and structural characteristics of the scaffold to suit the needs of each cell type. This work describes for the first time a systematic study to gain insight into the cell type-specific response of primary human osteoblast (hOBs) and human dermal microvascular endothelial cells (HDMECs) to insoluble collagen-based biomaterials. The behaviour was evaluated on both 2D films and 3D scaffolds, produced using freeze-drying. The collagen was cross-linked at various EDC/NHS concentrations and mono-cultured with hOBs and HDMECs to assess the effect of architectural features and scaffold stabilization on cell behaviour. It was observed that 3D scaffolds cross-linked at 30% of the standard conditions in literature offered an optimal combination of mechanical stiffness and cellular response for both cell types, although endothelial cells were more sensitive to the degree of cross-linking than hOBs. Architectural features have a time-dependent impact on the cell migration profile, with alignment being the most influential parameter overall.

2.
Front Plant Sci ; 8: 7, 2017.
Article in English | MEDLINE | ID: mdl-28167950

ABSTRACT

The extended superfamily of chlorophyll a/b binding proteins comprises the Light-Harvesting Complex Proteins (LHCs), the Early Light-Induced Proteins (ELIPs) and the Photosystem II Subunit S (PSBS). The proteins of the ELIP family were proposed to function in photoprotection or assembly of thylakoid pigment-protein complexes and are further divided into subgroups with one to three transmembrane helices. Two small One-Helix Proteins (OHPs) are expressed constitutively in green plant tissues and their levels increase in response to light stress. In this study, we show that OHP1 and OHP2 are highly conserved in photosynthetic eukaryotes, but have probably evolved independently and have distinct functions in Arabidopsis. Mutations in OHP1 or OHP2 caused severe growth deficits, reduced pigmentation and disturbed thylakoid architecture. Surprisingly, the expression of OHP2 was severely reduced in ohp1 T-DNA insertion mutants and vice versa. In both ohp1 and ohp2 mutants, the levels of numerous photosystem components were strongly reduced and photosynthetic electron transport was almost undetectable. Accordingly, ohp1 and ohp2 mutants were dependent on external organic carbon sources for growth and did not produce seeds. Interestingly, the induction of ELIP1 expression and Cu/Zn superoxide dismutase activity in low light conditions indicated that ohp1 mutants constantly suffer from photo-oxidative stress. Based on these data, we propose that OHP1 and OHP2 play an essential role in the assembly or stabilization of photosynthetic pigment-protein complexes, especially photosystem reaction centers, in the thylakoid membrane.

4.
Nat Commun ; 7: 12810, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27641145

ABSTRACT

Directed cell movement involves spatial and temporal regulation of the cortical microtubule (Mt) and actin networks to allow focal adhesions (FAs) to assemble at the cell front and disassemble at the rear. Mts are known to associate with FAs, but the mechanisms coordinating their dynamic interactions remain unknown. Here we show that the CRL3(KLHL21) E3 ubiquitin ligase promotes cell migration by controlling Mt and FA dynamics at the cell cortex. Indeed, KLHL21 localizes to FA structures preferentially at the leading edge, and in complex with Cul3, ubiquitylates EB1 within its microtubule-interacting CH-domain. Cells lacking CRL3(KLHL21) activity or expressing a non-ubiquitylatable EB1 mutant protein are unable to migrate and exhibit strong defects in FA dynamics, lamellipodia formation and cortical plasticity. Our study thus reveals an important mechanism to regulate cortical dynamics during cell migration that involves ubiquitylation of EB1 at focal adhesions.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Movement , Cytoskeletal Proteins/metabolism , Focal Adhesions/metabolism , Microtubules/metabolism , Ubiquitin-Protein Ligases/metabolism , HeLa Cells , Humans , Ubiquitination
6.
Nat Cell Biol ; 15(4): 430-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23455478

ABSTRACT

Polo-like kinase 1 (PLK1) critically regulates mitosis through its dynamic localization to kinetochores, centrosomes and the midzone. The polo-box domain (PBD) and activity of PLK1 mediate its recruitment to mitotic structures, but the mechanisms regulating PLK1 dynamics remain poorly understood. Here, we identify PLK1 as a target of the cullin 3 (CUL3)-based E3 ubiquitin ligase, containing the BTB adaptor KLHL22, which regulates chromosome alignment and PLK1 kinetochore localization but not PLK1 stability. In the absence of KLHL22, PLK1 accumulates on kinetochores, resulting in activation of the spindle assembly checkpoint (SAC). CUL3-KLHL22 ubiquitylates Lys 492, located within the PBD, leading to PLK1 dissociation from kinetochore phosphoreceptors. Expression of a non-ubiquitylatable PLK1-K492R mutant phenocopies inactivation of CUL3-KLHL22. KLHL22 associates with the mitotic spindle and its interaction with PLK1 increases on chromosome bi-orientation. Our data suggest that CUL3-KLHL22-mediated ubiquitylation signals degradation-independent removal of PLK1 from kinetochores and SAC satisfaction, which are required for faithful mitosis.


Subject(s)
Cell Cycle Proteins/metabolism , Centrosome/metabolism , Chromosomes, Human/genetics , Kinetochores/metabolism , Microtubules/metabolism , Mitosis/physiology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Spindle Apparatus/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Blotting, Western , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cullin Proteins/antagonists & inhibitors , Cullin Proteins/genetics , Cullin Proteins/metabolism , HeLa Cells , Humans , Immunoprecipitation , Microscopy, Fluorescence , Molecular Sequence Data , Phosphorylation , Protein Array Analysis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Sequence Homology, Amino Acid , Signal Transduction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Ubiquitin/metabolism , Ubiquitination , Polo-Like Kinase 1
8.
PLoS One ; 4(4): e5309, 2009.
Article in English | MEDLINE | ID: mdl-19390580

ABSTRACT

BACKGROUND: Antigen-based (as opposed to whole organism) vaccines are actively being pursued for numerous indications. Even though different formulations may produce similar levels of total antigen-specific antibody, the composition of the antibody response can be quite distinct resulting in different levels of therapeutic activity. METHODOLOGY/PRINCIPAL FINDINGS: Using plasmid-based immunization against the proto-oncogene HER-2 as a model, we have demonstrated that affinity-selected epitope mimetics (mimotopes) can provide a defined signature of a polyclonal antibody response. Further, using novel computer algorithms that we have developed, these mimotopes can be used to predict epitope targets. CONCLUSIONS/SIGNIFICANCE: By combining our novel strategy with existing methods of epitope prediction based on physical properties of an individual protein, we believe that this method offers a robust method for characterizing the breadth of epitope-specificity within a specific polyserum. This strategy is useful as a tool for monitoring immunity following vaccination and can also be used to define relevant epitopes for the creation of novel vaccines.


Subject(s)
Epitopes/chemistry , Epitopes/immunology , Immune Sera/immunology , Algorithms , Animals , Cell Proliferation , Immunization , Mice , Mice, Inbred BALB C , Mice, Transgenic , Peptide Library , Rats , Receptor, ErbB-2/metabolism
9.
Strahlenther Onkol ; 181(10): 665-72, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16220406

ABSTRACT

BACKGROUND AND PURPOSE: With three-dimensional conformal intensity-modulated radiotherapy (3D-c-IMRT) a heterogeneous dose distribution can be achieved in both planning treatment volume and in adjacent normal tissues and organs to be spared. 3D-c-IMRT demands for modified photon fluence profiles which can be accomplished with different techniques. This report deals with the commissioning of metal compensators and the first experiences in clinical use. Dosimetric accuracy, dose coverage and practical experience like treatment delivery time, monitor units and dose outside the treated volume are evaluated. PATIENTS AND METHODS: From January 2002 to April 2004, 24 patients with head-and-neck cancers were treated with 3D-c-IMRT using tin-wax compensators. The dose prescription included a simultaneously integrated boost (SIB). High-dose volume was irradiated with 60-70 Gy (median 66 Gy), low-dose volume with 48-54 Gy (median 52 Gy) administered by a standardized seven- portal coplanar beam arrangement. Dose at one parotid gland was aimed at 26 Gy. The compensators used consisted of tin granules embedded in wax; recalculation was performed with compensators made of the alloy MCP96 as well. RESULTS: In 21 of 24 patients 3D-c-IMRT with tin-wax compensators reduced the median dose to one parotid gland to < 30 Gy. Recalculation with compensators with higher density which allowed higher attenuation revealed better protection of the parotid gland. The treatment delivery time per fraction was between 6 and 12 min (plus time for patient positioning), approximately 300 MU per 2 Gy were applied. The dose outside the treated volume was increased with regard to open fields and comparable with a physical wedge of 15-30 degrees . Quality assurance and treatment of patient were fast and simple. It was shown, that calculated dose distribution corresponded to measured dose distribution with high accuracy. CONCLUSION: The described method offers facilities for a good dose coverage of irregular target volumes with different prescribed doses and a considerable dose reduction in adjacent organs at risk. The dose sparing of organs at risk can be further improved, if a compensator material with higher density is used.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Radiotherapy, Conformal/methods , Humans , Image Processing, Computer-Assisted , Particle Accelerators , Quality Assurance, Health Care , Radiography , Radiotherapy Dosage , Radiotherapy, Computer-Assisted/methods , Radiotherapy, Conformal/standards , Reproducibility of Results , Tonsillar Neoplasms/diagnostic imaging , Tonsillar Neoplasms/radiotherapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...